Dynamic contrast-enhanced ultrasound has been proposed to monitor tumor therapy, as a complement to volume measurements. To assess the variability of perfusion parameters in ideal conditions, four consecutive test-retest studies were acquired in a mouse tumor model, using controlled injections. The impact of mathematical modeling on parameter variability was then investigated. Coefficients of variation (CV) of tissue blood volume (BV) and tissue blood flow (BF) based-parameters were estimated inside 32 sub-regions of the tumors, comparing the log-normal (LN) model with a one-compartment model fed by an arterial input function (AIF) and improved by the introduction of a time delay parameter. Relative perfusion parameters were also estimated by normalization of the LN parameters and normalization of the one-compartment parameters estimated with the AIF, using a reference tissue (RT) region. A direct estimation (rRTd) of relative parameters, based on the one-compartment model without using the AIF, was also obtained by using the kinetics inside the RT region. Results of test-retest studies show that absolute regional parameters have high CV, whatever the approach, with median values of about 30% for BV, and 40% for BF. The positive impact of normalization was established, showing a coherent estimation of relative parameters, with reduced CV (about 20% for BV and 30% for BF using the rRTd approach). These values were significantly lower (p  <  0.05) than the CV of absolute parameters. The rRTd approach provided the smallest CV and should be preferred for estimating relative perfusion parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/aa54a3DOI Listing

Publication Analysis

Top Keywords

dynamic contrast-enhanced
8
contrast-enhanced ultrasound
8
impact mathematical
8
mathematical modeling
8
perfusion parameters
8
test-retest studies
8
tissue blood
8
one-compartment model
8
parameters estimated
8
relative parameters
8

Similar Publications

Increases in mean lesional iron content by quantitative susceptibility mapping (QSM) by ≥6% and/or vascular permeability by dynamic contrast enhanced quantitative perfusion (DCEQP) by ≥40% on MRI have been associated with new symptomatic hemorrhage (SH) in cerebral cavernous malformations (CCMs). It is not known if plasma biomarkers can reflect these changes within the lesion proper. This cohort study enrolled 46 CCM patients with SH in the prior year.

View Article and Find Full Text PDF

Quantitative pre-clinical imaging of hypoxia and vascularity using MRI and PET.

Methods Cell Biol

January 2025

Translational Radiomics, Luxembourg Institute of Health, Luxembourg City, Luxembourg; In-Vivo Imaging Platform, Luxembourg Institute of Health, Luxembourg City, Luxembourg.

During hypoxia, tissues are subjected to an inadequate oxygen supply, disrupting the balance needed to maintain normal function. This deficiency can occur due to reduced oxygen delivery caused by impaired blood flow or a decline in the blood's ability to carry oxygen. In tumors, hypoxia and vascularization play crucial roles, shaping their microenvironments and influencing cancer progression, response to treatment and metastatic potential.

View Article and Find Full Text PDF

[F]FDG PET/CT versus Dynamic Contrast-Enhanced CT for the diagnosis of solitary pulmonary Nodule: A Head-to-Head comparative Meta-Analysis.

Eur J Radiol

January 2025

Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China; Department of Pulmonary and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China; Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. Electronic address:

Purpose: This head-to-head comparative meta-analysis aimed to evaluate the comparative diagnostic efficacy of [F]FDG PET/CT and dynamic contrast-enhanced CT(DCE-CT) for the differentiation between malignant and benign pulmonary nodules.

Methods: An extensive search was conducted in the PubMed, Embase, and Web of Science to identify available publications up to March 23, 2024. Studies were included if they evaluated the diagnostic efficacy of [F]FDG PET/CT and DCE-CT for the characterization of pulmonary nodules.

View Article and Find Full Text PDF

Purpose: To assess the success rate of confirmation of ultrasound-guided intranodal needle positioning by saline injection for dynamic contrast-enhanced magnetic resonance lymphangiography (DCMRL) in pediatric patients.

Material And Methods: Data from children undergoing nodal DCMRL after ultrasound-guided needle positioning into inguinal lymph nodes and validation of the needle position by injection of plain saline solution between 05/2020 and 12/2022 were reviewed. On injection of saline solution, adequate needle position was confirmed by lymph node distension without leakage.

View Article and Find Full Text PDF

Purpose: Perfusion modeling presents significant opportunities for imaging biomarker development in breast cancer but has historically been held back by the need for data beyond the clinical standard of care (SoC) and uncertainty in the interpretability of results. We aimed to design a perfusion model applicable to breast cancer SoC dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) series with results stable to low temporal resolution imaging, comparable with published results using full-resolution DCE-MRI, and correlative with orthogonal imaging modalities indicative of biophysical markers.

Methods: Subsampled high-temporal-resolution DCE-MRI series were run through our perfusion model and resulting fits were compared for consistency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!