By slow reaction between colorless AgWOF and elemental F in liquid anhydrous HF, violet platelike single crystals of Ag(WOF) were grown. The crystal structure of Ag(WOF) consists of layers built from Ag cations bridged by [WOF] anions and not, as previously assumed, from infinite [Ag-F] chains and [WOF] anions. A majority (97%) of the disordered Ag cations are found with square-planar coordination of F/O ligands within the same layer, and they form additional long contacts with O/F atoms originating from the neighboring layers. The remaining 3% the of Ag(II) ions are coordinated only by F atoms in a square-planar fashion. The magnetic moments of Ag from the same layer are almost perfectly antiferromagnetically aligned. Weak ferromagnetic interlayer interactions cause a small tilt (∼1.5°) of the magnetic moments, resulting in canted antiferromagnetism. Because of the lowering of the symmetry of [WOF] in the solid state, the vibrational spectra show more bands than expected for regular C symmetry. The electronic spectrum of Ag(WOF) is reported and analyzed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.6b02034 | DOI Listing |
Sci Adv
January 2025
2D Crystal Consortium, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA.
Small
December 2024
Department of Applied Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China.
The observation of both resonant quantum tunneling of magnetization (RQTM) and resonant quantum magnetodielectric (RQMD) effect in the perovskite multiferroic metal-organic framework [CHNH]Co(HCOO).is reported. An intrinsic magnetic phase separation emerges at low temperatures due to the hydrogen-bond-modified long-range super-exchange interaction, leading to the coexistence of canted antiferromagnetic order and single-ion (Co) magnets.
View Article and Find Full Text PDFACS Omega
December 2024
Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
Two-dimensional organic-inorganic perovskites have been attracted as candidates for multiferroic materials that exhibit two or more ferroic orders such as ferromagnetism, ferroelectricity, ferroelasticity, and ferrotoroidicity. Here, we introduce the structure, ferroelastic domains and magnetic properties of the two-dimensional organic-inorganic perovskite [CH(CH)NH]FeCl (CHEA-Fe) composed of 2-(1-cyclohexenyl)ethylammonium and FeCl . CHEA-Fe underwent two ferroelastic phase transitions from tetragonal to orthorhombic at 332 K and to monoclinic at 232 K with decreasing temperature and exhibited ferroelastic domains under polarized light as a consequence of these ferroelastic phase transitions.
View Article and Find Full Text PDFInorg Chem
December 2024
Materials, Chemical, and Computational Sciences Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States.
To synthetically target a specific material with select performance, the underlying relationship between structure and function must be understood. For targeting magnetic properties, such understanding is underdeveloped for a relatively new class of layered hexagonal perovskites, the 12R-BaMnO family. Here, we perform a detailed magnetostructural study of the layered hexagonal perovskite materials 12R-BaMnO, where = diamagnetic Ce or paramagnetic ≈ 1/2 Pr.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Department of Physics, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, USA.
We perform infrared magnetospectroscopy of Landau level (LL) transitions in dual-gated bilayer graphene. At ν=4 when the zeroth LL (octet) is filled, two resonances are observed indicating the opening of a gap. At ν=0 when the octet is half-filled, multiple resonances disperse nonmonotonically with increasing displacement field, D, perpendicular to the sheet, showing a phase transition at modest displacement fields from a canted antiferromagnet (CAFM) to the layer-polarized state, with a gap that opens linearly in D.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!