Photoelectrochemical Properties and Behavior of α-SnWO Photoanodes Synthesized by Hydrothermal Conversion of WO Films.

ACS Appl Mater Interfaces

Materials Science and Engineering Graduate Program, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States.

Published: January 2017

AI Article Synopsis

  • Metal oxides with moderate band gaps are essential for effective hydrogen production via photoelectrochemical (PEC) water splitting, and an α-SnWO photoanode synthesized from WO films shows promise by achieving current conversion from light up to 700 nm.
  • The photoanode demonstrates a favorable flat-band potential, making it suitable for hydrogen evolution, although the measured photocurrent density is significantly below theoretical expectations due to defects causing hole localization.
  • To enhance the PEC performance and stability of α-SnWO, further improvements are needed through alternative synthesis methods and the implementation of protective coatings or catalysts.

Article Abstract

Metal oxides with moderate band gaps are desired for efficient production of hydrogen from sunlight and water via photoelectrochemical (PEC) water splitting. Here, we report an α-SnWO photoanode synthesized by hydrothermal conversion of WO films that achieves photon to current conversion at wavelengths up to 700 nm (1.78 eV). This photoanode is promising for overall PEC water-splitting because the flat-band potential and voltage of photocurrent onset are more negative than the potential of hydrogen evolution. Furthermore, the photoanode utilizes a large portion of the solar spectrum. However, the photocurrent density reaches only a small fraction of that which is theoretically possible. Density functional theory based thermodynamic and electronic structure calculations were performed to elucidate the nature and impact of defects in α-SnWO prepared by this synthetic route, from which hole localization at Sn-at-W antisite defects was determined to be a likely cause for the poor photocurrent. Measurements further showed that the photocurrent decreases over time due to surface oxidation, which was suppressed by improving the kinetics of hole transfer at the semiconductor/electrolyte interface. Alternative synthetic methods and the addition of protective coatings and/or oxygen evolution catalysts are suggested to improve the PEC performance and stability of this promising α-SnWO material.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b12640DOI Listing

Publication Analysis

Top Keywords

synthesized hydrothermal
8
hydrothermal conversion
8
conversion films
8
photoelectrochemical properties
4
properties behavior
4
α-snwo
4
behavior α-snwo
4
α-snwo photoanodes
4
photoanodes synthesized
4
films metal
4

Similar Publications

In the search for new ultraviolet (UV) nonlinear optical (NLO) materials, two novel cadmium mixed halide compounds, (NH)CdClF and (NH)CdBrF, are successfully synthesized via hydrothermal methods. These compounds crystallize in the noncentrosymmetric (NCS) space group, R32, and are composed of distorted octahedral [CdXF] (X═Cl or Br) units, which extend into a 3D framework. Remarkably, both compounds demonstrate strong second-harmonic generation (SHG) efficiencies-3.

View Article and Find Full Text PDF

This study, we synthesized a graphene oxide@BiBTC MOF (GO@BiBTC) photocatalyst using a hydrothermal method. The resulting samples were comprehensively characterized using FT-IR, Raman spectra, XRD, SEM, TEM, XPS and UV-Vis spectroscopy. The photodegradation reaction fits the pseudo-first-order kinetics and the deterioration rate constants () value of BiBTC, GO@BiBTC MOF composites were 0.

View Article and Find Full Text PDF

In this study, we present the growth of large (millimeter- and centimeter-scale) crystals of RbSnBr double perovskite a hydrothermal process. The crystals and powders were successfully synthesized, yielding light-yellow products, and subjected to comprehensive characterization using powder and single crystal X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS) point analysis, and UV-Vis diffuse reflectance spectroscopy. Previously, methods such as solution growth, evaporation, and gel techniques have been employed to synthesize RbSnBr.

View Article and Find Full Text PDF

SiO-Mediated Hydrothermal Synthesis of Spiroffite-Type CoTeO.

Inorg Chem

January 2025

Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States.

The hydrothermal synthesis of novel materials typically relies on both knowledge of the redox activities of all cations present in the reaction solution and a small toolset of so-called mineralizers to tune the solution's overall chemical potential. Upon the use of a less conventional mineralizer species, SiO, we show the stabilization of spiroffite-type CoTeO under less forceful hydrothermal conditions than those in previous reports. When synthesized in the presence of both SiO and each respective alkali carbonate as a secondary mineralizer, silicon substitution in place of tellurium in the host structure becomes apparent, and the corresponding disorder introduced gives rise to enhanced low-temperature ferromagnetism.

View Article and Find Full Text PDF

Five alkali metal manganese(III) fluorophosphates, KMn(POF)F (I), RbMn(POF)F (II), RbMn(POF)(PO)F (III), RbMn(POF)(PO)F (IV), and CsMn(POF)F (V), were successfully synthesized using a hydrothermal method. The monofluorophosphate anion (POF) groups work as "chemical scissors" to promote low-dimensional spin structures with the aid of alkali metal cations. I and II had an = 2 uniform chain structure formed by corner-sharing -MnOF octahedra.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!