The ultrasound technology was successfully used to improve the mass transfer processes on food. However, the study of this technology on the grain hydration and on its main components properties was still not appropriately described. This work studied the application of the ultrasound technology on the hydration process of mung beans (Vigna radiata). This grain showed sigmoidal hydration behavior with a specific water entrance pathway. The ultrasound reduced ~25% of the hydration process time. In addition, this technology caused acceleration of the seed germination - and some hypothesis for this enhancement were proposed. Moreover, it was demonstrated that the ultrasound did not change both structure and pasting properties of the bean starch. Finally, the flour rheological properties proved that the ultrasound increased its apparent viscosity, and as the starch was not modified, this alteration was attributed to the proteins. All these results are very desirable for industry since the ultrasound technology improves the hydration process without altering the starch properties, accelerates the germination process (that is important for the malting and sprouting process) and increases the flour apparent viscosity, which is desirable to produce bean-based products that need higher consistency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5171542PMC
http://dx.doi.org/10.1038/srep38996DOI Listing

Publication Analysis

Top Keywords

ultrasound technology
16
hydration process
12
main components
8
apparent viscosity
8
ultrasound
7
hydration
6
technology
6
process
5
enhancing mung
4
mung bean
4

Similar Publications

Fluid administration is widely used to treat hypotension in patients undergoing veno-venous extracorporeal membrane oxygenation (VV-ECMO). However, excessive fluid administration may lead to fluid overload can aggravate acute respiratory distress syndrome (ARDS) and increase patient mortality, predicting fluid responsiveness is of great significance for VV-ECMO patients. This prospective single-center study was conducted in a medical intensive care unit (ICU) and finally included 51 VV-ECMO patients with ARDS in the prone position (PP).

View Article and Find Full Text PDF

Early prediction of patient responses to neoadjuvant chemotherapy (NACT) is essential for the precision treatment of early breast cancer (EBC). Therefore, this study aims to noninvasively and early predict pathological complete response (pCR). We used dynamic ultrasound (US) imaging changes acquired during NACT, along with clinicopathological features, to create a nomogram and construct a machine learning model.

View Article and Find Full Text PDF

Theranostic drugs represent an emerging path to deliver on the promise of precision medicine. However, bottlenecks remain in characterizing theranostic targets, identifying theranostic lead compounds, and tailoring theranostic drugs. To overcome these bottlenecks, we present the Theranostic Genome, the part of the human genome whose expression can be utilized to combine therapeutic and diagnostic applications.

View Article and Find Full Text PDF

The proximity ligation-based Hi-C and derivative methods are the mainstream tools to study genome-wide chromatin interactions. These methods often fragment the genome using enzymes functionally irrelevant to the interactions per se, restraining the efficiency in identifying structural features and the underlying regulatory elements. Here we present Footprint-C, which yields high-resolution chromatin contact maps built upon intact and genuine footprints protected by transcription factor (TF) binding.

View Article and Find Full Text PDF

In optical imaging of solid tumors, signal contrasts derived from inherent tissue temperature differences have been employed to distinguish tumor masses from surrounding tissue. Moreover, with the advancement of active infrared imaging, dynamic thermal characteristics in response to exogenous thermal modulation (heating and cooling) have been proposed as novel measures of tumor assessment. Contrast factors such as the average rate of temperature changes and thermal recovery time constants have been investigated through an active thermal modulation imaging approach, yielding promising tumor characterization results in a xenograft mouse model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!