A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Population Pharmacokinetic and Pharmacodynamic Modeling of Epacadostat in Patients With Advanced Solid Malignancies. | LitMetric

AI Article Synopsis

  • Epacadostat (EPA) is an oral immunotherapy drug designed to inhibit the enzyme IDO1, being tested in patients with advanced solid tumors to assess its safety and effectiveness.
  • In a study involving 52 oncology patients, various doses of EPA were administered, and the drug's pharmacokinetics were analyzed, finding body weight to be the main factor affecting drug levels in the body.
  • A mechanistic model estimated EPA's potency against IDO1 in vivo at approximately 70 nM, indicating that both IDO1 and another enzyme (TDO) contribute to the conversion of tryptophan to kynurenine, with IDO1 being the more significant contributor in cancer patients.

Article Abstract

Epacadostat (EPA, INCB024360) is a selective inhibitor of the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) and is being developed as an orally active immunotherapy to treat advanced malignancies. In the first clinical study investigating the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of EPA in oncology patients, increasing doses of EPA ranging from 50 mg once daily to 700 mg twice daily were administered as a monotherapy to 52 subjects with advanced solid tumors. The EPA plasma concentration-time profiles were adequately described by a population PK model comprised of the first-order kinetics of oral absorption with 2-compartment distribution and constant clearance from the central compartment. Body weight was the only significant covariant to influence EPA PK. Determination of EPA's on-target potency, ie, its half-maximal inhibitory concentration (IC ) against IDO1, is important for dose selection but complicated by the bioconversion of tryptophan (TRP) to kynurenine (KYN) catalyzed by both IDO1 and TRP 2,3-dioxygenase (TDO). In vitro and ex vivo, the IC was estimated following the selective induction of IDO1, rendering the TDO activity relatively insignificant; however, it was desirable to determine the in vivo IC without inducing an IDO1 abundance. A mechanistic population PD model was developed based on time-matched EPA, TRP, and KYN plasma concentrations in 44 oncology patients, and EPA in vivo IC was estimated to be ∼70 nM, consistent with the ex vivo value independently determined. The model suggests that ∼60% and 40% of TRP→KYN bioconversion was mediated by IDO1 and TDO, respectively, in the cancer patients at baseline. For this study population of limited numbers of subjects, neither age nor sex was a significant covariate for EPA PK or PD.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcph.855DOI Listing

Publication Analysis

Top Keywords

advanced solid
8
epa
8
oncology patients
8
population model
8
vivo estimated
8
ido1
6
population
4
population pharmacokinetic
4
pharmacokinetic pharmacodynamic
4
pharmacodynamic modeling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!