The simultaneous profiling of 43 functional metabolites in the brain of the small model vertebrate organism, marine medaka (Oryzais melastigma), has been accomplished via dansyl chloride derivatization and LC-MS/MS quantification. This technique was applied to examine effects of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), one of the most abundant polybrominated diphenyl ether flame retardants in the natural environment, on the central nervous system (CNS) of vertebrates. The model teleosts were fed with bioencapsulated Artemia nauplii for up to 21 days. Multivariate statistical analysis has demonstrated that levels of numerous classical neurotransmitters and their metabolites in the CNS of the fish were perturbed even at the early phase of dietary exposure. Subsequent metabolic pathway analysis further implied potential impairment of the arginine and proline metabolism; glycine, serine and threonine metabolism; D-glutamine and D-glutamate metabolism; alanine, aspartate, and glutamate metabolism; valine, leucine, and isoleucine biosynthesis, and the cysteine and methionine metabolism in the brain of the test organism. Our results demonstrate that targeted profiling of functional metabolites in the CNS may shed light on how the various neurological pathways of vertebrates, including humans, are affected by toxicant/stress exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00244-016-0342-0 | DOI Listing |
J Vis Exp
January 2025
Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee;
Cardiovascular disease (CVD) is the leading cause of death in the United States. Damage in the cardiovascular system can be due to environmental exposure, trauma, drug toxicity, or numerous other factors. As a result, cardiac tissue and vasculature undergo structural changes and display diminished function.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan.
Marine resources are attractive for screening new useful bacteria. From a marine sediment sample, we performed isolation and screening of bacterial strains in search of new bioactive compounds. HPLC and ESI-MS analysis indicated that the new bacterium, Lysinibacillus sp.
View Article and Find Full Text PDFmBio
January 2025
Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.
Unlabelled: In the gut, microRNAs (miRNAs) produced by intestinal epithelial cells are secreted into the lumen and can shape the composition and function of the gut microbiome. Crosstalk between gut microbes and the host plays a key role in irritable bowel syndrome (IBS) and inflammatory bowel diseases, yet little is known about how the miRNA-gut microbiome axis contributes to the pathogenesis of these conditions. Here, we investigate the ability of miR-21, a miRNA that we found decreased in fecal samples from IBS patients, to associate with and regulate gut microbiome function.
View Article and Find Full Text PDFBiofactors
January 2025
Natural Products and Analytical Chemistry Laboratory, MIGAL - Galilee Research Institute, Kiryat Shemona, Israel.
Atherosclerosis is a major cause of morbidity and mortality worldwide; in Israel, ischemic heart disease is the second leading cause of death for both genders aged 45 and above. Atherosclerosis involves stiffening of the arteries due to the accumulation of lipids and oxidized lipids on the blood vessel walls, triggering the development of artery plaque. Coronary artery disease (CAD) is the most common manifestation of atherosclerosis.
View Article and Find Full Text PDFInt J Artif Organs
January 2025
Department of Cardiac surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
Cardiopulmonary bypass (CPB) is an indispensable technique in cardiac surgery; however, its impact on gut microbiota and metabolites remains insufficiently studied. CPB may disrupt the intestinal mucosal barrier, altering the composition and function of gut microbiota, thereby triggering local immune responses and systemic inflammation, which may lead to postoperative complications. This narrative review examines relevant literature from PubMed, Web of Science, Google Scholar, and CNKI databases over the past decade.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!