The effect of RGD peptide on 2D and miniaturized 3D culture of HEPM cells, MSCs, and ADSCs with alginate hydrogel.

Cell Mol Bioeng

Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210 (USA); Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210 (USA); Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 (USA).

Published: June 2016

Advancements in tissue engineering require the development of new technologies to study cell behavior . This study focuses on stem cell behavior within various miniaturized three-dimensional (3D) culture conditions of alginate biomaterials modified with the Arg-Gly-Asp (RGD) peptide known for its role in cell adhesion/attachment. Human embryonic palatal mesenchyme (HEPM) cells, bone marrow derived mesenchymal stem cells (MSCs), and human adipose derived stem cells (ADSCs) were cultured on a flat hydrogel of different concentrations of alginate-RGD, and in the miniaturized 3D core of microcapsules with either a 2% alginate or 2% alginate-RGD shell. The core was made of 0%, 0.5%, or 2% alginate-RGD. Cell spreading was observed in all systems containing the RGD peptide, and the cell morphology was quantified by measuring the cell surface area and circularity. In all types of stem cells, there was a significant increase in the cell surface area ( < 0.05) and a significant decrease in cell circularity ( < 0.01) in alginate-RGD conditions, indicating that cells spread much more readily in environments containing the peptide. This control over the cell spreading within a 3D microenvironment can help to create the ideal biomimetic condition in which to conduct further studies on cell behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5157694PMC
http://dx.doi.org/10.1007/s12195-016-0428-9DOI Listing

Publication Analysis

Top Keywords

rgd peptide
12
cell behavior
12
stem cells
12
cell
10
hepm cells
8
cells mscs
8
cell spreading
8
cell surface
8
surface area
8
cells
6

Similar Publications

Magnetic Nanoactuator-Protein Fiber Coated Hydrogel Dressing for Well-Balanced Skin Wound Healing and Tissue Regeneration.

ACS Nano

January 2025

State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China.

Despite significant progress in skin wound healing, it is still a challenge to construct multifunctional bioactive dressings based on a highly aligned protein fiber coated hydrogel matrix for antifibrosis skin wound regeneration that is indistinguishable to native skin. In this study, a "dual-wheel-driven" strategy is adopted to modify the surface of methacrylated gelatin (GelMA) hydrogel with highly aligned magnetic nanocomposites-protein fiber assemblies (MPF) consisting of photothermal responsive antibacteria superparamagnetic nanocomposites-fibrinogen (Fg) complexes as the building blocks. Whole-phase healing properties of the modified hydrogel dressing, GelMA-MPF (GMPF), stem from the integration of Fg protein with RGD peptide activity decorated on the surface of the antibacterial magnetic nanoactuator, facilitating facile and reproducible dressing preparation by self-assembly and involving biochemical, morphological, and biophysical cues.

View Article and Find Full Text PDF

Chemotherapy is essential for treating tumors, including head and neck cancer (HNC). However, the toxic side effects of chemotherapeutic drugs limit their widespread use. Therefore, a targeted delivery system that can transport the drug to the pathological site while minimizing damage to healthy tissues is urgently needed.

View Article and Find Full Text PDF

Facile universal strategy of presenting multifunctional short peptides for customizing desired surfaces.

J Nanobiotechnology

January 2025

Department of Spinal Surgery, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, Zhejiang, 317500, China.

Article Synopsis
  • Interfacial properties of biomaterials influence critical functions like cell adhesion and tissue repair, making their manipulation essential for clinical applications.
  • The study develops a versatile layer-by-layer (LbL) strategy to effectively attach peptides to substrates using polyphenols, enhancing interfacial functionalities.
  • The resulting peptide-polyphenol coatings demonstrate broad applicability, stability, and the ability to incorporate various functional molecules for improved biomaterial performance.
View Article and Find Full Text PDF

Poor selectivity to tumor cells is a major drawback in the clinical application of the antitumor drug docetaxel (DTX). Peptide-drug conjugates (PDCs) constructed by modifying antitumor drugs with peptide ligands that have high affinity to certain overexpressed receptors in tumor cells are increasingly assessed for their possibility of tumor-selective drug delivery. In the present research, DTX is condensed with 3-(pyridin-2-yldisulfanyl) propanoic acid via ester bond to obtain the intermediate Py-SS-DTX.

View Article and Find Full Text PDF

The native extracellular matrix is continuously remodeled to form complex interconnected network structures that reversibly regulate stem cell behaviors. Both regulation and understanding of its intricate dynamicity can help to modulate numerous cell behaviors. However, neither of these has yet been achieved due to the lack of designing and modeling such complex structures with dynamic controllability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!