Role of mineralocorticoid receptor activation in cardiac diastolic dysfunction.

Biochim Biophys Acta Mol Basis Dis

Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA; Research Service, Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO 65212, USA; Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65212, USA. Electronic address:

Published: August 2017

The prevalence of cardiac diastolic dysfunction and heart failure with preserved ejection, a major cause of morbidity and mortality in the western world, is increasing due, in part, to increases in obesity and type 2 diabetes. Characteristics of cardiac diastolic dysfunction include increased myocardial stiffness and impaired left ventricular (LV) relaxation that is characterized by prolonged isovolumic LV relaxation and slow LV filling. Obesity, insulin resistance and type 2 diabetes, especially in females promote activation of mineralocorticoid receptor (MR) signaling with resultant increases in oxidative stress, maladaptive immune responses, inflammation, and impairment of coronary blood flow and cardiac interstitial fibrosis. This review highlights findings from the recent surge in cardiac diastolic dysfunction research. To this end it highlights our contemporary understanding of molecular mechanisms of MR regulation by genetic, epigenetic and posttranslational modifications and resultant cardiac diastolic dysfunction associated with insulin resistance, obesity and type 2 diabetes. This review also explores potential preventative and therapeutic strategies directed in the prevention of cardiac diastolic dysfunction and heart failure with preserved ejection. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure edited by Dr. Jun Ren & Yingmei Zhang.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5410190PMC
http://dx.doi.org/10.1016/j.bbadis.2016.10.025DOI Listing

Publication Analysis

Top Keywords

cardiac diastolic
24
diastolic dysfunction
24
heart failure
12
type diabetes
12
mineralocorticoid receptor
8
dysfunction heart
8
failure preserved
8
preserved ejection
8
obesity type
8
insulin resistance
8

Similar Publications

Left atrial shunting devices: why, what, how, and… when?

Heart Fail Rev

January 2025

Department of Cardiology, San Luca Hospital, IRCCS Istituto Auxologico Italiano, Milan, Italy.

Left atrial (LA) hypertension is central in the pathophysiology of heart failure (HF) in general and of HF with preserved ejection fraction (HFpEF) in particular. Despite approved treatments, a number of HF patients continue experiencing disabling symptoms due to LA hypertension, causing pulmonary congestion, pulmonary hypertension, and right heart dysfunction, at rest and/or during exercise. LA decompression therapies, i.

View Article and Find Full Text PDF

This study employed large eddy simulation (LES) with the wall-adapting local eddy-viscosity (WALE) model to investigate transitional flow characteristics in an idealized model of a healthy thoracic aorta. The OpenFOAM solver pimpleFoam was used to simulate blood flow as an incompressible Newtonian fluid, with the aortic walls treated as rigid boundaries. Simulations were conducted for 30 cardiac cycles and ensemble averaging was employed to ensure statistically reliable results.

View Article and Find Full Text PDF

Objective: To determine the effects of rapid (1 minute) and slow (10 minutes) intravenous (IV) injection of sodium penicillin on arterial blood pressure in anesthetized horses.

Study Design: Prospective randomized clinical trial.

Animals: A group of 29 client-owned horses of various breeds, 1-20 years old, with body masses of 360-710 kg.

View Article and Find Full Text PDF

Background: Cardiovascular risk factors (CRFs) like hypertension, high cholesterol, and diabetes mellitus are increasingly linked to cognitive decline and dementia, especially in cerebral small vessel disease (cSVD). White matter hyperintensities (WMH) are closely associated with cognitive impairment, but the mechanisms behind their development remain unclear. Blood-brain barrier (BBB) dysfunction may be a key factor, particularly in cSVD.

View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion (I/R) injury refers to cell damage that occurs as a consequence of the restoration of blood circulation following reperfusion therapy for cardiovascular diseases, and it is a primary cause of myocardial infarction. The search for nove therapeutic targets in the context of I/R injury is currently a highly active area of research. p70 ribosomal S6 kinase (S6K1) plays an important role in I/R induced necrosis, although the specific mechanisms remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!