An overview of the necessary thymic contributions to tolerance in transplantation.

Clin Immunol

School of Medicine, University of Virginia, United States; Division of Transplantation, Department of Surgery, University of Virginia, United States.

Published: October 2016

The thymus is important for the development of the immune system. However, aging leads to predictable involution of the thymus and immunodeficiency. These immunodeficiencies may be rectified with thymic rejuvenation. Atrophy of the thymus is governed by a complex interplay of molecular, cytokine and hormonal factors. Herein we review the interaction of these factors across age and how they may be targeted for thymic rejuvenation. We further discuss the growing pre-clinical evidence defining the necessary and sufficient contributions of the thymus to successful tolerance induction in transplantation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clim.2016.10.010DOI Listing

Publication Analysis

Top Keywords

thymic rejuvenation
8
overview thymic
4
thymic contributions
4
contributions tolerance
4
tolerance transplantation
4
thymus
4
transplantation thymus
4
thymus development
4
development immune
4
immune system
4

Similar Publications

Rejuvenating the immune system.

Mol Oncol

January 2025

Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Greece.

Rejuvenation of elementary immune system components has emerged as a promising strategy to deal with increased susceptibility to infections, cancers, autoimmune disorders, and low efficacy to vaccines, frequently accompanying aging. In this context, the thymus has gained significant attention. A recent study by Santamaria et al.

View Article and Find Full Text PDF

Background: Immune reconstitution is a significant factor in the success of "hematopoietic stem cell transplantation" (HSCT). Delaying the immune reconstitution increases the risk of infections and relapse after transplantation. T-cell recovery after HSCT is mainly thymus-dependent, and thymic atrophy is associated with various clinical conditions that correlate with HSCT outcomes.

View Article and Find Full Text PDF

Spermidine alleviates thymopoiesis defects and aging of the peripheral T-cell population in mice after radiation exposure.

Exp Gerontol

January 2025

Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan.

The T cell aging process can be modified by genotoxic factors, including ionizing radiation, and metabolic controls, such as caloric restriction; the former accelerates and the latter retards the process. However, the mechanisms by which these systemic factors interact to cause T cell aging remain unclear. This study investigated the naïve T-cell pool, thymic cellularity, and transcriptome in mice irradiated with 3.

View Article and Find Full Text PDF

RANKL treatment restores thymic function and improves T cell-mediated immune responses in aged mice.

Sci Transl Med

December 2024

Centre d'Immunologie de Marseille-Luminy, CIML, CNRS, INSERM, Aix-Marseille Université, Marseille, Turing Centre for Living Systems, 13288 Marseille Cedex 09, France.

Age-related thymic involution, leading to reduced T cell production, is one of the major causes of immunosenescence. This results in an increased susceptibility to cancers, infections, and autoimmunity and in reduced vaccine efficacy. Here, we identified that the receptor activator of nuclear factor κB (RANK)-RANK ligand (RANKL) axis in the thymus is altered during aging.

View Article and Find Full Text PDF

The Role of T Cells in Alzheimer's Disease Pathogenesis.

Crit Rev Immunol

November 2023

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong, 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangdong, 510515, China.

Alzheimer's disease (AD) is a progressive neurodegenerative disorder associated with memory decline and cognitive impairment, which is related to hallmark protein aggregates, amyloid-β (Аβ) plaques and neurofibrillary tangles; the latter are accumulated with hyperphosphorylated Tau protein. Immune cells play an important role in AD pathogenesis. Although the role of T cells in AD remains controversial, studies have shown that T cell deficiency is associated with increased AD pathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!