We previously reported the anti-inflammatory effects of cilostazol, a selective inhibitor of phosphodiesterase 3, and two antioxidants, enzymatically modified isoquercitrin and α-lipoic acid in a dextran sodium sulphate-induced colitis mouse model. We further examined the chemopreventive effects of these substances in a murine azoxymethane/dextran sodium sulphate -induced colorectal carcinoma model and compared the effects with those of the well-known anticancer natural plant pigment, anthocyanin. In addition, the effects on cell proliferation activity were evaluated in colon cancer cell lines and mucosal epithelial cells in a model of acute dextran sodium sulphate-induced colitis. Cilostazol and enzymatically modified isoquercitrin improved the outcome of azoxymethane/dextran sodium sulphate-induced colorectal cancer along with anthocyanin though inhibiting inflammation and cell proliferation, but the effect of α-lipoic acid was minimal. Inhibition of cell proliferation by cilostazol was confirmed in vitro. In the acute dextran sodium sulphate-induced colitis model, cilostazol and enzymatically modified isoquercitrin prevented the decrease in epithelial proliferative cells. These results indicate that cilostazol and enzymatically modified isoquercitrin first exhibited an anti-dextran sodium sulphate effect at the initial stage of colitis and then showed antitumour effects throughout subsequent inflammation-related cancer developmental stages.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2016.12.018DOI Listing

Publication Analysis

Top Keywords

enzymatically modified
20
modified isoquercitrin
20
cilostazol enzymatically
16
cell proliferation
16
sodium sulphate-induced
16
dextran sodium
12
sulphate-induced colitis
12
colon cancer
8
α-lipoic acid
8
azoxymethane/dextran sodium
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!