Where does hydrolysis of nandrolone decanoate occur in the human body after release from an oil depot?

Int J Pharm

Department of Clinical Pharmacy, Division of Laboratory & Pharmacy, University Medical Center Utrecht, P/O Box 85500, 3508 GA Utrecht, The Netherlands; Department of Pharmaceutics, UIPS, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands.

Published: December 2016

Long-term therapy of nandrolone (N) is recommended to increase mineral density and muscle strength. Using a parenteral sustained release drug formulation with nandrolone decanoate (ND), therapeutic N levels can be achieved and maintained. Until now, it is unknown if hydrolysis of ND into N occurs in tissue at the injection site or after systemic absorption. Therefore, hydrolysis studies were conducted to investigate the location and rate of ND hydrolysis after its release from the oil depot. ND hydrolysis was studied in porcine tissues, to mimic the human muscular and subcutaneous tissues. Additionally, the ND hydrolysis was studied in human whole blood, plasma and serum at a concentration range of 23.3-233.3μM. ND hydrolysis only occurred in human whole blood. The hydrolysis did not start immediately, but after a lag time. The mean lag time for all studied concentrations was 34.9±2.5min. Because of a slow penetration into tissue, hydrolysis of ND is found to be very low in surrounding tissue. Therefore the local generation of the active compound is clinically irrelevant. It is argued that after injection of the oil depot, ND molecules will be transported via the lymphatic system towards lymph nodes. From here, it will enter the central circulation and within half an hour it will hydrolyse to the active N compound.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2016.10.068DOI Listing

Publication Analysis

Top Keywords

hydrolysis
9
nandrolone decanoate
8
release oil
8
oil depot
8
hydrolysis studied
8
human blood
8
lag time
8
active compound
8
hydrolysis nandrolone
4
decanoate occur
4

Similar Publications

As a result of the current high throughput of the fast fashion collections and the concomitant decrease in product lifetime, we are facing enormous amounts of textile waste. Since textiles are often a blend of multiple fibers (predominantly cotton and polyester) and contain various different components, proper waste management and recycling are challenging. Here, we describe a high-yield process for the sequential chemical recycling of cotton and polyester from mixed waste textiles.

View Article and Find Full Text PDF

The present study aimed to explore the potential of macroalgal hydrolysate to serve as an economical substrate for the growth of the oleaginous microbes Aspergillus sp. SY-70, Rhizopus arrhizus SY-71 and Aurantiochytrium sp. YB-05 for lipid and DHA production under laboratory conditions.

View Article and Find Full Text PDF

Myelomeningocele (MMC) is a congenital defect of the spine characterized by meningeal and spinal cord protrusion through open vertebral archs, and its exposure to the amniotic fluid. Given that the progression of neuronal loss begins early in fetal life, an early coverage of the defect is required to improve the neurological outcomes. Several studies have proposed patches as an alternative to full surgical repair, to achieve an early protection of the spine and possibly reduce the rate of complications of current prenatal surgical procedures.

View Article and Find Full Text PDF

Performance of four thermophilic bacteria for primary sludge hydrolysis: Sludge disintegration and hydrolase activities.

Bioresour Technol

January 2025

College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China. Electronic address:

Thermophilic bacteria (TB) pretreatment is an efficient and environmentally friendly way for accelerating sludge hydrolysis. In this study, a complete comparison of the hydrolysis performance of Bacillus sp. AT07-1 (X1), Parageobacillus toebii X2 (X2), Geobacillus kaustophilus X3 (X3) and Parageobacillus toebii R-35642 (X4) was performed.

View Article and Find Full Text PDF

Optimising medium chain carboxylate production in xylan mixed-culture monofermentation.

Bioresour Technol

January 2025

CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela 15782 Santiago de Compostela, Spain.

This work investigates the optimization of medium-chain carboxylate (MCC) production through xylan mixed-culture monofermentation. The pH screening in batch assays showed that the hydrolysis stage and selectivity towards MCC precursors were optimised at pH 6. Subsequently, a continuous stirred tank reactor (CSTR) and a Sequential Batch Reactor (SBR) were operated at different Hydraulic Retention Times (HRT), revealing that the SBR at HRT 2 days yielded the highest caproic acid since lactic acid availability and chain elongation process were balanced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!