Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The effects of live yeast (LY) and mannan-oligosaccharide (MOS) supplementation on intestinal disruption induced by Escherichia coli in broilers were investigated. The experimental design was a 3×2 factorial arrangement with three dietary treatments (control, 0·5 g/kg LY (Saccharomyces cerevisiae, 1·0×1010 colony-forming units/g), 0·5 g/kg MOS) and two immune treatments (with or without E. coli challenge from 7 to 11 d of age). Samples were collected at 14 d of age. The results showed that E. coli challenge impaired (P<0·05) growth performance during the grower period (1-21 d) and the overall period (1-35 d) of broilers, increased (P<0·05) serum endotoxin and diamine oxidase levels coupled with ileal myeloperoxidase and lysozyme activities, whereas reduced (P<0·05) maltase activity, and compromised the morphological structure of the ileum. Besides, it increased (P<0·05) the mRNA expressions of several inflammatory genes and reduced occludin expression in the ileum. Dietary treatment with both LY and MOS reduced (P<0·05) serum diamine oxidase and ileal myeloperoxidase levels, but elevated villus height (P<0·10) and the ratio of villus height:crypt depth (P<0·05) of the ileum. It also alleviated (P<0·05) E. coli-induced increases (P<0·05) in ileal Toll-like receptor 4, NF-κ B and IL-1 β expressions. Moreover, LY supplementation reduced (P<0·05) feed conversion ratio of birds during the grower period and enhanced (P<0·05) the community diversity (Shannon and Simpson indices) of ileal microbiota, whereas MOS addition counteracted (P<0·05) the decreased ileal IL-10 and occludin expressions in challenged birds. In conclusion, both LY and MOS supplementation could attenuate E. coli-induced intestinal disruption by alleviating intestinal inflammation and barrier dysfunction in broilers. Moreover, LY addition could improve intestinal microbial community structure and feed efficiency of broilers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S0007114516004116 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!