A History of the Molecular Initiating Event.

Chem Res Toxicol

Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom.

Published: December 2016

The adverse outcome pathway (AOP) framework provides an alternative to traditional in vivo experiments for the risk assessment of chemicals. AOPs consist of a number of key events (KEs) linked by key event relationships across a range of biological organization backed by scientific evidence. The first KE in the pathway is the molecular initiating event (MIE)-the initial chemical trigger that starts an AOP. Over the past 3 years the AOP conceptual framework has gained a large amount of momentum in toxicology as an alternative to animal methods, and so the MIE has come into the spotlight. What is an MIE? How can MIEs be measured or predicted? What research is currently contributing to our understanding of MIEs? In this Perspective we outline answers to these key questions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.chemrestox.6b00341DOI Listing

Publication Analysis

Top Keywords

molecular initiating
8
initiating event
8
history molecular
4
event adverse
4
adverse outcome
4
outcome pathway
4
pathway aop
4
aop framework
4
framework alternative
4
alternative traditional
4

Similar Publications

Count-rate management in I SPECT/CT calibration.

EJNMMI Phys

January 2025

Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Solna, Sweden.

Background: System calibration is essential for accurate SPECT/CT dosimetry. However, count losses due to dead time and pulse pileup may cause calibration errors, in particular for I, where high count rates may be encountered. Calibration at low count rates should also be avoided to minimise detrimental effects from e.

View Article and Find Full Text PDF

Introduction: China implemented a dynamic zero-COVID strategy to curb viral transmission in response to the coronavirus disease 2019 (COVID-19) pandemic. This strategy was designed to inhibit mutation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19. This study explores the dynamics of viral evolution under stringent non-pharmaceutical interventions (NPIs) through real-world observations.

View Article and Find Full Text PDF

Plants possess remarkably durable resistance against non-adapted pathogens in nature. However, the molecular mechanisms underlying this resistance remain poorly understood, and it is unclear how the resistance is maintained without coevolution between hosts and the non-adapted pathogens. In this study, we used Phytophthora sojae (Ps), a non-adapted pathogen of N.

View Article and Find Full Text PDF

Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.

View Article and Find Full Text PDF

Roaming reactions involving a neutral fragment of a molecule that transiently wanders around another fragment before forming a new bond are intriguing and peculiar pathways for molecular rearrangement. Such reactions can occur for example upon double ionization of small organic molecules, and have recently sparked much scientific interest. We have studied the dynamics of the [Formula: see text]-roaming reaction leading to the formation of [Formula: see text] after two-photon double ionization of ethanol and 2-aminoethanol, using an XUV-UV pump-probe scheme.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!