A novel maturation index based on neonatal diffusion tensor imaging reflects typical perinatal white matter development in humans.

Int J Dev Neurosci

Development, Health, and Disease Research Program, University of California, Irvine. Irvine, CA, United States; Department of Pediatrics, University of California, Irvine. Irvine, CA, United States; Charité University Medicine Berlin, Institute for Medical Psychology, 
Luisenstraße 57, 10117 Berlin, Germany. Electronic address:

Published: February 2017

Human birth presents an abrupt transition from intrauterine to extrauterine life. Here we introduce a novel Maturation Index (MI) that considers the relative importance of gestational age at birth and postnatal age at scan in a General Linear Model. The MI is then applied to Diffusion Tensor Imaging (DTI) in newborns for characterizing typical white matter development in neonates. DTI was performed cross-sectionally in 47 neonates (gestational age at birth=39.1±1.6 weeks [GA], postnatal age at scan=25.5±12.2days [SA]). Radial diffusivity (RD), axial diffusivity (AD) and fractional anisotropy (FA) along 27 white matter fiber tracts were considered. The MI was used to characterize inflection in maturation at the time of birth using GLM estimated rates of change before and after birth. It is proposed that the sign (positive versus negative) of MI reflects the period of greatest maturation rate. Two general patterns emerged from the MI analysis. First, RD and AD (but not FA) had positive MI on average across the whole brain (average MI=0.31±0.42, average MI=0.22±0.34). Second, significant regions of negative MI in RD and FA (but not AD) were observed in the inferior corticospinal regions, areas known to myelinate early. Observations using the proposed method are consistent with proposed models of the white matter maturation process in which pre-myelination is described by changes in AD and RD due to oligodendrocyte proliferation while true myelination is characterized by changes in RD and FA due to myelin formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5316374PMC
http://dx.doi.org/10.1016/j.ijdevneu.2016.12.004DOI Listing

Publication Analysis

Top Keywords

white matter
16
novel maturation
8
diffusion tensor
8
tensor imaging
8
matter development
8
gestational age
8
postnatal age
8
maturation based
4
based neonatal
4
neonatal diffusion
4

Similar Publications

Dynamic X-ray Microtomography vs. Laser-Doppler Vibrometry: A Comparative Study.

J Assoc Res Otolaryngol

January 2025

Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, 3010, Freiburgstrasse, Bern, Switzerland.

Purpose: There are challenges in understanding the biomechanics of the human middle ear, and established methods for studying this system show significant limitations. In this study, we evaluate a novel dynamic imaging technique based on synchrotron X-ray microtomography designed to assess the biomechanical properties of the human middle ear by comparing it to laser-Doppler vibrometry (LDV).

Methods: We examined three fresh-frozen temporal bones (TB), two donated by white males and one by a Black female, using dynamic synchrotron-based X-ray microtomography for 256 and 512 Hz, stimulated at 110 dB and 120 dB sound pressure level (SPL).

View Article and Find Full Text PDF

Genetic analyses identify circulating genes related to brain structures associated with Parkinson's disease.

NPJ Parkinsons Dis

January 2025

Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China.

Magnetic resonance imaging and circulating molecular testing are potential methods for diagnosing and treating Parkinson's disease (PD). However, their relationships remain insufficiently studied. Using genome-wide association summary statistics, we found in the general population a genetic negative correlation between white matter tract mean diffusivity and PD (-0.

View Article and Find Full Text PDF

Static and dynamic connectivity structure of white-matter functional networks across the adult lifespan.

Prog Neuropsychopharmacol Biol Psychiatry

January 2025

MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, PR China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, PR China. Electronic address:

Aging of the human brain involves intricate biological processes, resulting in complex changes in structure and function. While the effects of aging on gray matter (GM) connectivity are extensively studied, white matter (WM) functional changes have received comparatively less attention. This study examines age-related WM functional dynamics using resting-state fMRI across the adult lifespan.

View Article and Find Full Text PDF

Characterizing the Microstructural Transition at the Gray Matter-White Matter Interface: Implementation and Demonstration of Age-Associated Differences.

Neuroimage

January 2025

Department of Radiology, Columbia University Irving Medical Center, New York, NY; Department of Biomedical Engineering, Columbia University, New York, NY. Electronic address:

Background: The cortical gray matter-white matter interface (GWI) is a natural transition zone where the composition of brain tissue abruptly changes and is a location for pathologic change in brain disorders. While diffusion magnetic resonance imaging (dMRI) is a reliable and well-established technique to characterize brain microstructure, the GWI is difficult to assess with dMRI due to partial volume effects and is normally excluded from such studies.

Methods: In this study, we introduce an approach to characterize the dMRI microstructural profile across the GWI and to assess the sharpness of the microstructural transition from cortical gray matter (GM) to white matter (WM).

View Article and Find Full Text PDF

Objective: This study aimed to explore the relationship between the Systemic Inflammatory Response Index (SIRI) and Cerebral Small Vessel Disease (CSVD), focusing on its key imaging markers.

Methods: We enrolled 344 patients admitted to the neurology department between January 2022 and September 2024, comprising 223 patients diagnosed with CSVD and 121 without CSVD. Baseline characteristics were compared between groups, and multivariate logistic regression was performed to assess the impact of SIRI on CSVD risk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!