Pythiosis is a life-threatening infectious disease caused by the pathogenic oomycete Pythium insidiosum. This study is the first to evaluate the P. insidiosum glucan content and its biological activities. The enzymatic quantification of the glucans in P. insidiosum mycelia showed that the β-glucan content was 18.99%±3.59. The cell wall polysaccharide extract consisted of ∼81.7% carbohydrates (exclusively glucose) and ∼18.3% residual amino acids and peptides. The results from monosaccharide composition, methylation and 1D/2D NMR spectroscopy analyses indicated the presence of a highly branched (1,3)(1,6)-β-d-glucan, with (1,6)-β-d-glucopyranosil side-branching unit on average every 1-2 repeat units. In vitro, the β-d-glucan extract could significantly promote spleen lymphocyte proliferation in human, equine and mouse cell cultures. BALB/c mice that were subcutaneously pre-immunized with three doses of 0.5, 2.5 and 5.0mg of β-glucan/mouse, showed a significant increase in IL-2, IL-6, IL-10, TNF-α and IL-17A production compared to non-immunized mice. These results suggested that β-d-glucan extract induces significant and specific Th17 cellular immune response and provided the theoretical basis for further experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2016.10.053 | DOI Listing |
Sci Rep
January 2025
Center of Excellence for Antimicrobial Resistance and Stewardship, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
The pathogenic oomycete Pythium insidiosum causes a fatal infectious illness known as pythiosis, impacting humans and certain animals in numerous countries in the tropics and subtropics. Delayed diagnosis is a primary factor contributing to the heightened morbidity and mortality associated with the disease. Several new serodiagnostic methods have been developed to improve the identification of pythiosis.
View Article and Find Full Text PDFPhytopathology
January 2025
China Agricultural University, Plant Pathology, No.2 Yuanmingyuan West Road, Beijing, China, 100193;
Traditional assessments of grapevine susceptibility to grapevine downy mildew (GDM) caused by rely on the visual evaluation of leaf symptoms. In this study, we used a well-established quantitative real-time PCR TaqMan assay (real-time PCR) to quantify the number of infecting 12 grapevine cultivars under controlled conditions. The molecular disease index (MDI), derived from molecular detection methods, reflects the relative abundance of pathogens in plant tissues during the latent infection phase.
View Article and Find Full Text PDFPhytopathology
January 2025
Swedish University of Agricultural Sciences, Plant Protection Biology, Alnarp, Sweden;
Transglutaminases (TGases) are enzymes highly conserved among prokaryotic and eukaryotic organisms, where their role is to catalyze protein cross-linking. One of the putative TGases of has previously been shown to be localized to the cell wall. Based on sequence similarity we were able to identify six more genes annotated as putative TGases and show that these seven genes group together in phylogenetic analysis.
View Article and Find Full Text PDFPlant Dis
December 2024
Liaoning Institute of Economic Forestry, Dalian, Liaoning, China;
Aralia elata (Miq.) Seem, is an important cash crop in northeastern China. The tender shoots are rich in amino acids, vitamins, and trace elements, and the saponins of leaves and roots have antioxidant and immune-boosting properties.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States.
, an environmental bacterium, holds promise as a biocontrol agent due to its ability to produce bioactive compounds effective against plant pathogens, such as fungi, oomycetes, and Gram-positive bacteria. However, it lacks activity against Gram-negative bacteria. To address this, we applied new genetic tools to manipulate the phenazine biosynthetic gene cluster () from , converting to a robust producer of phenazine antibiotics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!