As a naturally-abundant biopolymer, chitosan (CS) exhibit pH-sensitive structural transformation within a narrow pH range. Integrating hydrophobic groups to CS molecules gives modified CS polymers with more adjustable pH responsiveness. In this paper, near-infrared (NIR) photoluminescent AgS QDs capped by long-chain carboxylic acid were synthesized and then conjugated with CS via esterification reaction. The anticancer drug doxorubicin (DOX) has an affinity for the hydrophobic oleoyl groups and was entrapped by them to produce AgS(DOX)@CS nanospheres. A variety of experiments were performed to characterize the nanospheres. In vitro and in vivo experiments showed that the nanospheres can release DOX at lowered pH in tumor cells and have high antitumor efficacy. In addition, the strong NIR signal derived from the encapsulated AgS QDs makes real-time monitoring of the nanosphere distribution in a body possible. This study provides a new CS-based nanocomposite drug carrier for efficient cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2016.09.092 | DOI Listing |
Expert Opin Biol Ther
January 2025
OU Stephenson Cancer Center, Oklahoma City.
Introduction: Antibody-drug conjugates (ADCs) are a rapidly evolving class of anti-cancer drugs with a significant impact on management of hematological malignancies including diffuse large B-cell lymphoma (DLBCL). ADCs combine a cytotoxic drug (a.k.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang , Liaoning Province, China.
NFKB1, a core transcription factor critical in various biological process (BP), is increasingly studied for its role in tumors. This research combines literature reviews, meta-analyses, and bioinformatics to systematically explore NFKB1's involvement in tumor initiation and progression. A unique focus is placed on the NFKB1-94 ATTG promoter polymorphism, highlighting its association with cancer risk across diverse genetic models and ethnic groups, alongside comprehensive analysis of pan-cancer expression patterns and drug sensitivity.
View Article and Find Full Text PDFMed Oncol
January 2025
Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
Didemnins, a class of cyclic depsipeptides derived from marine organisms exhibit notable anticancer properties. Among them, Didemnin B has been extensively researched for its strong antitumor activity and progression to clinical trials. Nonetheless, its clinical application has been impeded by challenges like poor bioavailability and dose-limiting toxicity.
View Article and Find Full Text PDFNat Prod Res
January 2025
Institute of Biopharmaceutical and Health Engineering, State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Gene and Antibody Therapy, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China.
Sophaline B (SPB), extracted from the seeds of L., is a natural bioactive compound that effectively exerts antiviral activities against the hepatitis B virus. This is the first study to demonstrate that SPB exerts anti-tumor effects on NSCLC by inducing pyroptosis and autophagy.
View Article and Find Full Text PDFJ Clin Med
December 2024
Pharmacy Department, Institut Català Oncologia (ICO), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet Llobregat, 08908 Barcelona, Spain.
Everolimus, an oral inhibitor of the mammalian target of rapamycin (mTOR), is actually used to prevent organ transplant rejection and treat metastatic breast, renal, and neuroendocrine cancers. Despite significant pharmacokinetic variability among patients, routine therapeutic drug monitoring (TDM) is not commonly used in oncology. The aim of this multicenter, prospective observational cohort study is to assess the prevalence of everolimus minimum concentration at a steady state (Cminss) falling outside the therapeutic range (10-26.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!