Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Microencapsulation using the transacylation reaction in a W/O emulsion is based on the creation of amide bonds between the protein's amine functions and the ester groups of a polysaccharide in the aqueous phase after alkalization. Commercial propylene glycol alginate (PGA) has been the only modified polysaccharide involved in the process up to now. In the present work, we describe the effect of substituting the commercial PGA by other chemically modified alginates in the formation of microparticles. Alkyl and hydroxyalkyl alginate esters, were synthesized and tested in the encapsulation process with human serum albumin (HSA). It was found that the hydroxyalkyl alginates were suitable polysaccharide substitutes for PGA in the transacylation reaction, whereas the alkyl alginates did not lead to microparticle formation in the same process. Hydroxyalkyl alginates with high esterification degree (DE) (>50) led to microparticles when involved in the preparation procedure. However with lower DE (<30), no microparticles could be obtained from 2% ester solution concentrations. This difference in reactivity was explained by the formation of hydrophobic microdomains with the alkyl esters that hindered the transacylation reaction, as opposed to hydroxyalkyl esters that bore hydrophilic ester groups.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2016.09.090 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!