A composite chitosan-gelatin macroporous hydrogel-based scaffold with bi-layered tubular architecture was engineered by solvent casting-co-particulate leaching. The scaffold constituted an inner macroporous layer concealed by a non-porous outer layer mimicking the 3D matrix of blood vessels with cellular adhesion and proliferation. The scaffold was evaluated for its morphological, physicochemical, physicomechanical and biodurability properties employing SEM, FTIR, DSC, XRD, porositometry, rheology and texture analysis. The fluid uptake and biodegradation in the presence of lysozymes was also investigated. Cellular attachment and proliferation was analysed using human dermal fibroblasts (HDF-a) seeded onto the scaffold and evaluated by MTT assay, SEM, and confocal microscopy. Results demonstrated that the scaffold had a desirable tensile strength=95.81±11kPa, elongation at break 112.5±13%, porosity 82% and pores between 100 and 230μm, 50% in vitro biodegradation at day 16 and proliferated fibroblasts over 20 days. These results demonstrate that scaffold may be an excellent tubular archetype for blood vessel tissue engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2016.09.095 | DOI Listing |
ACS Omega
December 2024
Department of Biological and Physical Sciences, South Carolina State University, Orangeburg, South Carolina 29117, United States.
Food packaging industries generally use petroleum-based packaging materials that are non-biodegradable and harmful to the environment. Eco-friendly polymers such as chitosan (CH), gelatin (GE), and cellulose nanocrystals (CNCs) are leading viable alternatives to plastics traditionally used in packaging because of their higher functionality and biodegradability. In this study, an innovative approach has been disclosed to prepare new packaging materials by utilizing chitosan, gelatin, and cellulose nanocrystals (CNCs) through a simple solution casting method.
View Article and Find Full Text PDFGels
December 2024
Center for Chemical Engineering, ITMO University, Kronverkskiy Prospekt, 49, 197101 Saint-Petersburg, Russia.
Taking into account the trends in the field of green chemistry and the desire to use natural materials in biomedical applications, (bio)polyelectrolyte complexes ((bio)PECs) based on a mixture of chitosan and gelatin seem to be relevant systems. Using the approach of self-assembly from the dispersion of the coacervate phase of a (bio)PEC at different ratios of ionized functional groups of chitosan and gelatin (), hydrogels with increased resistance to mechanical deformations and resorption in liquid media were obtained in this work in comparison to a hydrogel from gelatin. It was found that at ≥ 1 a four-fold increase in the elastic modulus of the hydrogel occurred in comparison to a hydrogel based on gelatin.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran. Electronic address:
In this research, a nanocomposite of FeO/chitosan/gelatin was prepared and used as a magnetic recyclable dewatering agent to improve the quality of fuel. Prepared materials were characterized by XRD, FT-IR, VSM, BET and FESEM techniques. Effective factors on water uptake i.
View Article and Find Full Text PDFFoods
December 2024
Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil.
The preservation of fish and seafood represents a significant challenge for the food industry due to these products' high susceptibility to microbial spoilage. Essential oils (EOs), classified as Generally Recognized as Safe (GRAS), have become a natural alternative to synthetic preservatives due to their antimicrobial and antioxidant properties. This review aims to analyze the specific potential of EOs in extending the shelf life of fish and seafood products, offering a natural and effective preservation solution.
View Article and Find Full Text PDFCarbohydr Polym
February 2025
Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China. Electronic address:
Full-thickness burn wounds in diabetes often present significant challenges in terms of timely progression of healing and even mortality. Multifunctional dressings that possess strong absorptivity and mechanical property while effectively regulating inflammation and promoting angiogenesis is therefore crucial. We have developed a novel sponge (CCGE) comprising carboxymethyl chitosan, gelatin, and glycerin for the purpose of promoting accelerated healing of scald wounds in diabetic rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!