Effect of spray drying on the properties of amylose-hexadecylammonium chloride inclusion complexes.

Carbohydr Polym

Plant Polymer Research Unit, USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N, University Street, Peoria, IL 61604, USA. Electronic address:

Published: February 2017

Water soluble amylose-hexadecyl ammonium chloride complexes were prepared from high amylose corn starch and hexadecyl ammonium chloride by excess steam jet cooking. Amylose inclusion complexes were spray dried to determine the viability of spray drying as a production method. The variables tested in the spray drying process were the% solids of the amylose-hexadecyl ammonium chloride complex being fed into the spray dryer, feed rate and the spray dryer outlet temperature. The amylose-inclusion complexes remained intact in all spray drying conditions tested as determined by X-ray diffraction. The rheological properties of solutions of the spray dried amylose-complexes remained unchanged when compared with the freeze dried control. Particle density and moisture content decreased with increased outlet temperature while particle size increased. X-ray diffraction and DSC analysis confirmed the formation of type II amylose inclusion complexes. Spray drying is a high throughput, low cost continuous commercial production method, which when coupled with excess steam jet cooking allows for the industrial scale production of cationic amylose-hexadecyl ammonium chloride complexes which may have value as flocculating and filtration enhancing agents and other aspects of paper production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2016.10.068DOI Listing

Publication Analysis

Top Keywords

spray drying
20
ammonium chloride
16
inclusion complexes
12
amylose-hexadecyl ammonium
12
spray
9
chloride complexes
8
excess steam
8
steam jet
8
jet cooking
8
amylose inclusion
8

Similar Publications

Micelles, liposomes, and solid lipid nanoparticles (SLNs) are promising drug delivery vehicles; however, poor aqueous stability requires post-processing drying methods for maintaining long-term stability. The objective of this study was to compare the potential of lipid-based micelles, liposomes, and SLNs for producing stable re-dispersible spray-dried powders with trehalose or a combination of trehalose and L-leucine. This study provides novel insights into the implementation of spray drying as a technique to enhance long-term stability for these lipid-based nanocarriers.

View Article and Find Full Text PDF

Dry powder inhalers (DPI's) are becoming increasingly popular due to growing interest in pulmonary drug delivery and their performance is the net result of a series of processes carried out during the formulation development and manufacturing process such as excipient selection, blending, milling, filling, and spray drying. To reach the small airways of the deep lung, the active pharmaceutical ingredients (API) particles need to have an aerodynamic diameter of 1-5 μm to avoid impaction and particle sedimentation in the upper respiratory tract, and due to this small particle size, the powder becomes highly cohesive resulting in poor flow. Therefore, API is usually blended with a coarse carrier to improve flowability, and due to its large size, it is more fluidizable than the micronized drug.

View Article and Find Full Text PDF

Self-emulsifying drug delivery systems (SEDDS) represent an innovative approach to improving the solubility and bioavailability of poorly water-soluble drugs, addressing significant challenges associated with oral drug delivery. This review highlights the advancements and applications of SEDDS, including their transition from liquid to solid forms, while addressing the formulation strategies, characterization techniques, and future prospects in pharmaceutical sciences. The review systematically analyzes existing studies on SEDDS, focusing on their classification into liquid and solid forms and their preparation methods, including spray drying, hot-melt extrusion, and adsorption onto carriers.

View Article and Find Full Text PDF

This study investigates the potential synergistic effects of extracts from (turmeric), (Arabica coffee beans), and (chili peppers) in reducing oxidative stress and inflammation, which are associated with metabolic disorders such as obesity, diabetes, and cardiovascular diseases. Using a systematic design of experiment (DoE) optimization approach, an optimal extract ratio of 1:3:4 (turmeric: coffee: chili) was identified. The efficacy of the extract combination was assessed through various antioxidant assays, inhibition of inflammation-related gene expression, and safety testing via the 3-(4,5-dimethylthazolk-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay.

View Article and Find Full Text PDF

Advancements in Oral Delivery Systems for Probiotics Based on Polysaccharides.

Polymers (Basel)

January 2025

College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.

Probiotics are an essential dietary supplement for intestinal flora balance, inhibition of pathogenic bacteria and immune regulation. However, probiotic inactivation during gastrointestinal transportation remains a big challenge for oral administration. Hence, oral delivery systems (ODSs) based on polysaccharides have been constructed to protect probiotics from harsh environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!