Studies on cellulose nanocrystals isolated from groundnut shells.

Carbohydr Polym

Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee, Saharanpur Campus, Saharanpur 247001, India. Electronic address:

Published: February 2017

Today, various renewable biomass resources are accepted as waste material and are mostly burnt or used as cattle feed. The commercial value of these wastes can be increased by utilising them in production of nanomaterials. So, the present work was conducted for isolation of cellulose nanocrystals (CNCs) from groundnut shells which are produced annually as waste in large quantity (∼7 million tons). The structural, thermal, morphological & elemental analyses were assessed through corresponding techniques. Light Scattering studies were performed to analyse more likely weight average molecular weight (M) & radius of radius (R). The high M ∼10g/mol obtained for CNCs in lithium chloride (LiCl)/N,N-dimethylacetamide (DMAc) system, was an interesting feature which gets affected by LiCl and polymer concentrations. Solution with high polymer and low LiCl concentration was found to show higher values of M & R.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2016.10.069DOI Listing

Publication Analysis

Top Keywords

cellulose nanocrystals
8
groundnut shells
8
studies cellulose
4
nanocrystals isolated
4
isolated groundnut
4
shells today
4
today renewable
4
renewable biomass
4
biomass resources
4
resources accepted
4

Similar Publications

Lignocellulosic biomass represents one of the most abundant renewable biological resources on earth. Despite its current underutilization as a source of high-value chemicals, it has promising applications in biomedical and other fields. Presently, lignocellulose is predominantly transformed into high-value-added products, e.

View Article and Find Full Text PDF

Background: Regenerating periodontal ligament (PDL) tissue is a vital challenge in dentistry that aims to restore periodontal function and aesthetics. This study explores a tissue engineering strategy that combines polycaprolactone (PCL)/collagen/cellulose acetate electrospun scaffolds with collagen hydrogels to deliver curcumin-loaded ZIF-8 nanoparticles fand periodontal ligament stem cells (PDLSCs).

Methods: Scaffolds were fabricated via electrospinningand collagen hydrogels incorporated PDLSCs and curcumin-loaded ZIF-8 nanoparticles (CURZIF-8) were developed using cross-linking.

View Article and Find Full Text PDF

Development of high-throughput electrospun chitosan/PEO-CNC composite membranes with enhanced antibacterial and oil-water separation properties.

Int J Biol Macromol

January 2025

Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China.

Untreated waste liquid mixtures often support large bacterial populations, posing challenges to effective purification due to high volume and limited filtration efficiency. This study aims to develop a multifunctional filtration membrane that combines both filtration and sterilization, enhancing overall purification efficiency. Using electrospinning technology, we fabricated a superhydrophilic, oil-repellent membrane by integrating the hydrophilic properties of chitosan, antibacterial N-halamine groups, and the mechanical strength of cellulose nanocrystals (CNC).

View Article and Find Full Text PDF

This study explored a facile method for converting macadamia nutshells into bio-based nanomaterials, including cellulose nanofibers (CNFs) and lignin nanoparticles (LNPs), through deep eutectic solvent (DES) pretreatment coupled with a nanofabrication strategy. Comparisons of the physicochemical, morphological, and structural properties of the CNF and LNPs produced through acidic choline chloride/oxalic acid dihydrate (ACDES) and alkaline KCO/glycerol DES (ALDES) pretreatments were conducted using SEM, TEM, FTIR, XRD, TGA, GPC and 2D NMR. The CNFs obtained from ACDES pretreatment (ACCNFs) exhibited uniform and long filament-like structures with shorter whisker-like nanocrystals.

View Article and Find Full Text PDF

The increasing reliance on electronic devices has created a pressing demand for high-performance and sustainable electromagnetic interference shielding materials. While conventional materials, such as metals and carbon-based composites, offer excellent shielding capabilities, they are hindered by high costs, environmental concerns, and limitations in scalability. Polysaccharide-based materials, including cellulose, chitosan, and alginate, represent a promising alternative due to their biodegradability, renewability, and versatility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!