Incorporation of silver and strontium in hydroxyapatite coating on titanium surface for enhanced antibacterial and biological properties.

Mater Sci Eng C Mater Biol Appl

School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072, China. Electronic address:

Published: February 2017

Implant-related infection in primary total joint prostheses has attracted considerable research attention. As a measure to improve the antimicrobial properties of implant materials, silver (Ag) was incorporated into calcium phosphate (CaP) coatings on Titanium (Ti) via a hydrothermal method. Further, strontium (Sr) was added as a binary dopant to reduce the cytotoxicity of Ag in the coatings. Results showed that the CaP coatings were uniformly deposited on Ti with enhanced hydrophilicity and nanoscale surface roughness. Moreover, cell adhesion, proliferation, and differentiation were improved after the CaP coating deposition. The antibacterial properties of the coatings were distinctly improved by the incorporation of Ag, but the cell proliferation and differentiation were significantly decreased. Owing to the incorporation of Sr, the Ag-CaP coatings were able to effectively counteract the negative effects of Ag while maintaining good antibacterial properties. In summary, hydrothermally deposited CaP coatings doped with Ag and Sr exhibit excellent biocompatibility and antimicrobial activity. Thus, such co-doped CaP coatings have considerable potential for orthopaedic implant modification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2016.10.079DOI Listing

Publication Analysis

Top Keywords

cap coatings
16
proliferation differentiation
8
antibacterial properties
8
coatings
7
cap
5
incorporation silver
4
silver strontium
4
strontium hydroxyapatite
4
hydroxyapatite coating
4
coating titanium
4

Similar Publications

Bacterial infections are a common cause of clinical complications associated with the use of orthodontic microimplants. Biofilm formation on their surfaces and subsequent infection of peri-implant tissues can result in either exfoliation or surgical removal of these medical devices. In order to improve the properties of microimplants, hybrid coatings enriched with silver nanoparticles, calcium, and phosphorus were investigated.

View Article and Find Full Text PDF

In the past decades, iron has been one of the intensively studied biodegradable metals due to its suitable mechanical properties, but it suffers from slow degradation in a physiological environment and low bioactivity. In this work, the beneficial properties of ceramic and polymer coatings were merged to enhance the corrosion properties and biological compatibility of Fe-based biomaterials. A new bilayer coating for Fe-based biomaterials that speeds up degradation while offering controlled, localized drug release to prevent infections was prepared.

View Article and Find Full Text PDF

Two decades of continuous progresses and breakthroughs in the field of bioactive ceramics and glasses driven by CICECO-hub scientists.

Bioact Mater

October 2024

Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal.

Over the past two decades, the CICECO-hub scientists have devoted substantial efforts to advancing bioactive inorganic materials based on calcium phosphates and alkali-free bioactive glasses. A key focus has been the deliberate incorporation of therapeutic ions like Mg, Sr, Zn, Mn, or Ga to enhance osteointegration and vascularization, confer antioxidant properties, and impart antimicrobial effects, marking significant contributions to the field of biomaterials and bone tissue engineering. Such an approach is expected to circumvent the uncertainties posed by methods relying on growth factors, such as bone morphogenetic proteins, parathyroid hormone, and platelet-rich plasma, along with their associated high costs and potential adverse side effects.

View Article and Find Full Text PDF

Calcium phosphate coated nanoparticles for drug delivery: where are we now?

Expert Opin Drug Deliv

January 2025

Advanced Materials and Nanobiotechnology Laboratory, TardigradeNano LLC, Irvine, CA, USA.

Introduction: For three decades since the term 'biomaterial' was defined in the late 1960s, the interest of the biomaterials research community in calcium phosphates (CaPs) constantly increased. After this interest reached its peak in the mid-1990s, however, it has begun its steady decline, which lasts to this day, the reasons being manifold, many of which are explicated in this review piece. As of this turning point onwards, one solution for CaP to regain its relevance has involved its use in composite structures where properties of complementary components are intended to mitigate each other's weaknesses.

View Article and Find Full Text PDF

Spatial confinement growth of high-performance persistent luminescence nanoparticles for image-guided sonodynamic therapy.

Acta Biomater

December 2024

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, PR China; Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, PR China. Electronic address:

Near-infrared (NIR) persistent luminescence nanoparticles (PLNPs) have significant potential in diagnostic and therapeutic applications owing to their unique persistent luminescence (PersL). However, obtaining high-performance NIR PLNPs remains challenging because of the limitations of current synthesis methods. Herein, we introduce a spatial confinement growth strategy for synthesizing high-performance NIR PLNPs using hollow mesoporous silica (hmSiO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!