Trimetallic nanoparticles are mainly formed by the combination of three different metals. The trimetallic catalysts were considerably more professional than bimetallic one. The trimetallic and bimetallic nanoparticles are of enormous attention than that of monometallic in both technological and scientific view as in these nanoparticles the catalytic properties can be tailored better than that of in the single monometallic catalyst. The trimetallic nanoparticles have been synthesized by different methods such as microwave, selective catalytic reduction, micro-emulsion, co-precipitation and hydrothermal etc. The surfaces area of trimetallic nanoparticles is comparatively unstable and thus gets simply precipitated away from their solution and ultimately resulted in their reduced catalytic activity. By using stabilizers like block copolymers, organic ligands, surfactants and dendrimers the trimetallic nanoparticles can be stabilized. The nanocomposites of trimetallics have been synthesized with inorganic and organic compounds such as: carbon, graphene, gelatin, cellulose, starch, chitosan, alginate, collagen and AlO etc. Trimetallic nanoparticles are used as a catalyst due to their outstanding electrochemical catalytic activity in comparison with the monometallic or bimetallic nanoparticles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2016.11.002 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
Heterogeneous catalysts have emerged as a potential key for closing the carbon cycle by converting carbon dioxide (CO) into value-added chemicals. In this work, we report a highly active and stable ceria (CeO)-based electronically tuned trimetallic catalyst for CO to CO conversion. A unique distribution of electron density between the defective ceria support and the trimetallic nanoparticles (of Ni, Cu, Zn) was established by creating the strong metal support interaction (SMSI) between them.
View Article and Find Full Text PDFBiomed Mater
January 2025
Department of Gastroenterology, Cangshan Hospital, The 900th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Fuzhou, People's Republic of China.
This study presents a novel electrochemical immunosensor for the detection of pepsinogen I, a potential biomarker for gastric cancer, based on a unique PdAgPt/MoSnanocomposite. The key innovation lies in the synergistic combination of trimetallic PdAgPt nanoparticles with MoSnanoflowers, which has not been previously reported for pepsinogen I detection. This hybrid material demonstrates exceptional electron transfer properties and a significantly larger electroactive surface area compared to conventional materials.
View Article and Find Full Text PDFACS Omega
November 2024
Nano and Functional Materials Lab (NFML), Department of Physics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
Trimetallic nanoparticles (TMNPs) have opened a broad spectrum of applications with a new class of materialistic combinations in several fields from electronics to medicinal and environmental applications. In this work, we report the synthesis and characterization of Ni/Cu/Ag TMNPs using the polyol method and their nonlinear optical (NLO) studies. A broad surface plasmon resonance (SPR) peak at 443 nm evidences the formation of the Ni/Cu/Ag TMNPs with a peak shift compared to their mono- or bimetallic counterparts.
View Article and Find Full Text PDFRSC Adv
November 2024
Botany and Microbiology Department, Faculty of Science, Al-Azhar University Cairo 11884 Egypt
An advanced hybrid nanocomposite based on different metals (copper, cobalt, and chromium) decorated with sustainable polysaccharides (gelatin, GLN, and hydroxyethyl cellulose, HEC) was developed. The composite reflects several advantages including a controlled particle size, particle size distribution, along with promising antimicrobial and anticancer activities. Topographical and elemental analyses were carried out using field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), and energy dispersive X-ray analysis (EDX), demonstrating the formation of trimetallic nanoparticles (NPs) possessing domain sizes of 169 nm and 102 nm assigned to the free nanocomposite (Fcomp) and loaded nanocomposite (Lcomp), respectively.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Universidad Nacional Autónoma de México/Centro de Nanociencias y Nanotecnología, Carr. Tijuana-Ensenada km107, Ensenada, 22860, Baja California, Mexico.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!