Biofilm formation on dental biomaterials is implicated in various oral health problems. Thus the challenge is to prevent the formation of this consortium of microorganisms using a safe approach such as antimicrobial and anti-adhesive natural products. Indeed, in the present study, the effects of an antifungal extract of Bacillus sp., isolated from plant rhizosphere, on the surface physicochemical properties of cobalt and nickel based dental alloys were studied using the contact angle measurements. Furthermore, in order to predict the adhesion of Candida albicans to the treated and untreated dental alloys, the total free energy of adhesion was calculated based on the extended Derjaguin-Landau-Verwey-Overbeek approach. Results showed hydrophobic and weak electron-donor and electron-acceptor characteristics of both untreated dental alloys. After treatment with the antifungal extract, the surface free energy of both dental alloys was influenced significantly, mostly for cobalt based alloy. In fact, treated cobalt based alloy became hydrophilic and predominantly electron donating. Those effects were time-dependent. Consequently, the total free energy of adhesion of C. albicans to this alloy became unfavorable after treatment with the investigated microbial extract. A linear relationship between the electron-donor property and the total free energy of adhesion has been found for both dental alloys. Also, a linear relationship has been found between this latter and the hydrophobicity for the cobalt based alloy. However, the exposure of nickel based alloy to the antifungal extract failed to produce the same effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2016.09.083 | DOI Listing |
JACC Cardiovasc Interv
January 2025
Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases of China, Beijing, China. Electronic address:
Background: First-generation bioresorbable scaffolds (BRS) increased risks of stent thrombosis and adverse events. The Bioheart scaffold is a new poly-L-lactic acid-based BRS.
Objectives: This study sought to evaluate the efficacy and safety of the BRS in patients with coronary artery disease.
JACC Cardiovasc Interv
January 2025
Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA. Electronic address:
Background: The risk-benefit ratio of the Absorb bioresorbable vascular scaffold (BVS) may vary before and after 3 years, the time point of complete bioresorption of the poly-L-lactic acid scaffold.
Objectives: The aim of this study was to determine the time-varying outcomes of the Absorb BVS compared with cobalt-chromium everolimus-eluting stents (EES) from a large individual-patient-data pooled analysis of randomized trials.
Methods: The individual patient data from 5 trials that randomized 5,988 patients undergoing percutaneous coronary intervention to the Absorb BVS vs EES with 5-year follow-up were pooled.
J Mater Sci Mater Med
January 2025
Clinic of Prosthetic Dentistry and Biomedical Materials Research, Hannover Medical School, Hannover, Germany.
Although implants have undergone a remarkable development over the past decades, modern implants still show complications that make the improvement of materials necessary. The presented study investigates the load-bearing capacity of an experimental dental implant made of a niobium alloy (Nb1Zr) compared to identical implants made of Ti6Al4V using chewing simulation for artificial aging. Eight implants each with an experimental design were manufactured from Nb1Zr and Ti6Al4V.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Prosthodontics, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
Zinc (Zn) and its alloys are promising biomaterials for orthopedic applications due to their degradability and mechanical properties. Zn plays a crucial role in bone formation, but excessive early release may cause cytotoxicity and inhibit osseointegration. To solve this, we developed a near-infrared (NIR) light-controlled polycaprolactone/copper-sulfur (PCL/CuS) coating that slows degradation and enhances osseointegration of Zn alloys.
View Article and Find Full Text PDFJ Dent Sci
December 2024
School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
Background/purpose: High gold (Au) alloys have many advantages, such as good mechanical properties and stable chemical properties for dental restoration. The purpose of this investigation was to investigate the effect of zirconia (ZrO)-magnesia (MgO)-based investment combined with an argon arc vacuum pressure (Ar-arc VP) casting process on the recasting of high Au alloys.
Materials And Methods: The recasting Au alloys were compared between the control group of conventional SiO-based investment/horizontal centrifugal (HC) casting and the experimental group of ZrO-MgO-based investment/Ar-arc VP die casting.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!