A novel and economical route for synthesizing akermanite (CaMgSiO) nano-bioceramic.

Mater Sci Eng C Mater Biol Appl

Mechanical Engineering Department, Eastern Mediterranean University, North Cyprus, Gazimağusa, TRNC, Mersin 10, Turkey.

Published: February 2017

Despite the benefits of akermanite, there are limited reports on making powder and dense bulk akermanite (CaMgSiO) and most articles have focused on building akermanite scaffolds. This study centers on a new and economical route for the synthesis of akermanite bioceramic via high energy ball milling and subsequent sintering of a mixed powders of eggshell (as calcium source), MgO, and SiO. The mechanisms occurred during akermanite synthesis were carefully investigated. XRD, DTA, FTIR, TGA, SEM, TEM, ICP and EDS were used for analyzing the obtained results. Simulated body fluid (SBF) was also used for assessing in vitro bioactivity of the akermanite samples. According to the results, the method presented in this study can be introduced as a facile method for preparing akermanite samples with a good compressive strength of 210±7MPa. The XRD patterns also indicated that akermanite bioceramic was synthesized after heat treating at 900°C which is very low compared to previous researches. With increasing the sintering time of the akermanite samples and the reduction of the surface porosities, the amount of the formed apatite and also the rate of apatite formation decreased and the compressive strength of the samples increased.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2016.11.021DOI Listing

Publication Analysis

Top Keywords

akermanite samples
12
akermanite
10
economical route
8
akermanite camgsio
8
akermanite bioceramic
8
compressive strength
8
novel economical
4
route synthesizing
4
synthesizing akermanite
4
camgsio nano-bioceramic
4

Similar Publications

Objective: This study aimed to evaluate the chemical solubility (CS) and conduct a comprehensive physicochemical characterization of several experimental and commercial lithium silicate-based glass-ceramics towards an understanding of the chemical processes governing dissolution in these glass-ceramics.

Methodology: Glass-ceramic (GC) samples were categorized into two groups: experimental materials featuring lithium metasilicate crystals (GCE1 and GCE2); and five commercial brands relying mostly on lithium disilicate (Celtra®Duo, IPS e.max®CAD, Straumann®n!ce®, CEREC Tessera™, and VITA Suprinity®).

View Article and Find Full Text PDF

This study evaluated the survival probabilities of two lithia-based glass-ceramics after final crystallization in a microwave furnace using conventional crystallization as a reference. Disc-shaped samples of a lithium silicate (LS, Celtra Duo) and a lithium disilicate (LD, e.max CAD) were prepared and divided into two groups according to the crystallization method (n = 30): microwave (M) or conventional furnaces (C).

View Article and Find Full Text PDF

Purpose: This study investigated the effects of femtosecond laser (FL) irradiation on the surface roughness and shear bond strength of high-translucency zirconia (6 mol% yttria-partially stabilized zirconia [6Y-PSZ]) and lithium disilicate (LiSiO) glass ceramics.

Methods: Fully sintered square-shaped specimens of 6Y-PSZ (7 groups; 20 specimens/group) and LiSiO (8 groups; 20 specimens/group) were surface-treated via sandblasting (50-μm alumina sand or glass beads) or FL irradiation (20- or 40-μm dot or cross-line patterns) or using Monobond Etch & Prime (Ivoclar Vivadent AG; only for LiSiO specimens). The surface roughness (arithmetic average [Sa] and developed interfacial area ratio [Sdr]) and shear bond strength after 24 h and 10,000 thermal cycles were measured and statistically analyzed.

View Article and Find Full Text PDF

Background: Although surface finishing processes are effective against Streptococcus mutans biofilm, the mechanism of action of saliva with different acidity values ​​has not been studied in detail. This study aims to produce four different all-ceramic materials in a single session with CAD/CAM devices and apply two different surface finishing processes, glazing and polishing, and then determine the retention of Streptococcus mutants on the surfaces of the materials in saliva with varying levels of acidity.

Methods: Zirconia-reinforced lithium silicate (Vita Suprinity, Vita Zahnfabrik, Bad Saöckingen, Germany), monochromatic feldspar (Vitablocs Mark 2, Vita Zahnfabrik, Bad Saöckingen, Germany), leucite glass ceramic (IPS Empress CAD, Ivoclar Vivadent, Liechtenstein), and monolithic zirconia (Incoris TZI (Cerec) Sirona, Germany) were used in the study.

View Article and Find Full Text PDF

Shear bond strength and ARI scores of metal brackets to glazed glass ceramics and zirconia: an in vitro study investigating surface treatment protocols.

BMC Oral Health

December 2024

Faculty of Dentistry, Innovative Dental Materials and Interfaces Research Unit (URB2i), UR 4462, Paris Cité University, 1 rue Maurice Arnoux, Montrouge, 92120, France.

Objective: To evaluate the shear bond strength (SBS) and adhesive remnant index (ARI) scores of metal brackets to glazed lithium disilicate reinforced glass-ceramics and zirconia according to various surface treatment protocols.

Methods: A total of 240 lithium disilicate ceramic (LD) and 240 zirconia (Zr) blocks were randomly divided according to sandblasting, hydrofluoric acid (HF) etching, universal primer use, and the adhesive system applied. A maxillary canine metal bracket was bonded to each sample with resin cement (Transbond XT, TXT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!