As components of electronic scrap, rare earth minerals are an interesting but little used source of raw materials that are highly important for the recycling industry. Currently, there exists no cost-efficient technology to separate rare earth minerals from an electronic scrap mixture. In this study, phage surface display has been used as a key method to develop peptides with high specificity for particular inorganic targets in electronic scrap. Lanthanum phosphate doped with cerium and terbium as part of the fluorescent phosphors of spent compact fluorescent lamps (CFL) was used as a target material of economic interest to test the suitability of the phage display method to the separation of rare earth minerals. One random pVIII phage library was screened for peptide sequences that bind specifically to the fluorescent phosphor LaPO :Ce ,Tb (LAP). The library contained at least 100 binding pVIII peptides per phage particle with a diversity of 1 × 10 different phage per library. After three rounds of enrichment, a phage clone containing the surface peptide loop RCQYPLCS was found to bind specifically to LAP. Specificity and affinity of the identified phage bound peptide was confirmed by using binding and competition assays, immunofluorescence assays, and zeta potential measurements. Binding and immunofluorescence assays identified the peptide's affinity for the fluorescent phosphor components CAT (CeMgAl O :Tb ) and BAM (BaMgAl O :Eu ). No affinity was found for other fluorescent phosphor components such as YOX (Y O :Eu ). The binding specificity of the RCQYPLCS peptide loop was improved 3-51-fold by using alanine scanning mutagenesis. The identification of peptides with high specificity and affinity for special components in the fluorescent phosphor in CFLs provides a potentially new strategic approach to rare earth recycling. Biotechnol. Bioeng. 2017;114: 1016-1024. © 2016 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.26240 | DOI Listing |
ACS Sens
January 2025
The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, P. R. China.
Microneedle (MN) sensors have great promise for food safety detection, but the rapid preparation of MNs for surface-enhanced Raman scattering (SERS) sensors with tunable and homogeneous nanoparticles remains a great challenge. To address this, a SERS sensor of gold nanoparticles@polydopamine@poly(methyl methacrylate) MN (AuNPs@PDA@PMMA-MN) was developed. The extended-Derjaguin-Landau-Verwey-Overbeek theory was applied to calculate the interaction energy between AuNPs and PDA.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Cellular and Molecular Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, 5714783734, Urmia, Iran.
Fe, Ni, and Cu doped ceria nanoparticles (CeNPs) were prepared with a simple and one-pot hydrothermal synthesis method. We investigated the chemiluminescence (CL) interaction between these NPs and rhodamine B (Rh B) and found that the highest CL intensity was related to the Rh B- Cu doped CeNPs. We assigned that to the higher catalytic property of Cu doped NPs compared to the others.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
We fabricated Co-based catalysts by the low-temperature thermal decomposition of R-Co intermetallics (R = Y, La, or Ce) to reduce the temperature of ammonia cracking for hydrogen production. The catalysts synthesized are nanocomposites of Co/RO with a metal-rich composition. In the Co/LaO catalyst derived from LaCo, Co nanoparticles of 10-30 nm size are enclosed by the LaO matrix.
View Article and Find Full Text PDFSmall
January 2025
Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
Electrochemical oxidation of 5-hydroxymethylfurfural (HMFOR) to generate high-value chemicals under mild conditions acts as an energy-saving and sustainable strategy. However, it is still challenging to develop electrocatalysts with high efficiency and good durability. Here, nickel foam (NF) supported CoCrCe(7.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemistry, Institute of Technical Education and Research, Siksha 'O' Anusandhan Deemed to Be University Bhubaneswar-751030 Odisha India
The widespread use of neodymium-iron-boron (NdFeB) magnets has raised concerns about the environmental impact of their disposal, prompting the need for sustainable recycling strategies. Traditional solvents used in recycling are toxic and flammable, making them risky to use. Ionic liquids are safer and greener options with low vapor pressure, high stability, and less flammability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!