The sodium transporter encoded by the HKT1;2 gene modulates sodium/potassium homeostasis in tomato shoots under salinity.

Plant Cell Environ

Department of Biochemistry, Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), C/Prof. Albareda 1, E-18008, Granada, Spain.

Published: May 2017

Excessive soil salinity diminishes crop yield and quality. In a previous study in tomato, we identified two closely linked genes encoding HKT1-like transporters, HKT1;1 and HKT1;2, as candidate genes for a major quantitative trait locus (kc7.1) related to shoot Na /K homeostasis - a major salt tolerance trait - using two populations of recombinant inbred lines (RILs). Here, we determine the effectiveness of these genes in conferring improved salt tolerance by using two near-isogenic lines (NILs) that were homozygous for either the Solanum lycopersicum allele (NIL17) or for the Solanum cheesmaniae allele (NIL14) at both HKT1 loci; transgenic lines derived from these NILs in which each HKT1;1 and HKT1;2 had been silenced by stable transformation were also used. Silencing of ScHKT1;2 and SlHKT1;2 altered the leaf Na /K ratio and caused hypersensitivity to salinity in plants cultivated under transpiring conditions, whereas silencing SlHKT1;1/ScHKT1;1 had a lesser effect. These results indicate that HKT1;2 has the more significant role in Na homeostasis and salinity tolerance in tomato.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.12883DOI Listing

Publication Analysis

Top Keywords

hkt11 hkt12
8
salt tolerance
8
sodium transporter
4
transporter encoded
4
hkt12
4
encoded hkt12
4
hkt12 gene
4
gene modulates
4
modulates sodium/potassium
4
sodium/potassium homeostasis
4

Similar Publications

AtHKT1 is a salt tolerance determinant that controls Na(+) entry into plant roots.

Proc Natl Acad Sci U S A

November 2001

Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, IN 47907-1165, USA.

Two Arabidopsis thaliana extragenic mutations that suppress NaCl hypersensitivity of the sos3-1 mutant were identified in a screen of a T-DNA insertion population in the genetic background of Col-0 gl1 sos3-1. Analysis of the genome sequence in the region flanking the T-DNA left border indicated that sos3-1 hkt1-1 and sos3-1 hkt1-2 plants have allelic mutations in AtHKT1. AtHKT1 mRNA is more abundant in roots than shoots of wild-type plants but is not detected in plants of either mutant, indicating that this gene is inactivated by the mutations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!