Electroporation (EP) of mRNA into human cells is a broadly applicable method to transiently express proteins of choice in a variety of different cell types. We have spent more than a decade to optimize and adapt this method, first for antigen-loading of dendritic cells (DCs), and subsequently for T cells, B cells, bulk PBMCs, and several cell lines. In this regard, antigens were introduced, processed, and presented in context of MHC class I and II. Next to that, functional proteins like adhesion receptors, T-cell receptors (TCRs), chimeric antigen receptors (CARs), constitutively active signal transducers, and others were successfully expressed. We have also established this protocol under full GMP compliance as part of a manufacturing license to produce mRNA-electroporated DCs for therapeutic vaccination in clinical trials. Therefore, we here want to share our universal mRNA electroporation protocol and the experience we have gathered with this method. The advantages of the transfection method presented here are: (1) easy adaptation to different cell types, (2) scalability from 10 to approximately 10 cells per shot, (3) high transfection efficiency (80-99 %), (4) homogenous protein expression, (5) GMP compliance if the EP is performed in a class A clean room, and (6) no transgene integration into the genome. The provided protocol involves: Opti-MEM® as EP medium, a square-wave pulse with 500 V, and 4 mm cuvettes. To adapt the protocol to differently sized cells, simply the pulse time is altered. Next to the basic protocol, we also provide an extensive list of hints and tricks, which in our opinion are of great value for everyone who intends to use this transfection technique.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-6481-9_10DOI Listing

Publication Analysis

Top Keywords

electroporation mrna
8
functional proteins
8
cell types
8
gmp compliance
8
cells
7
protocol
5
mrna universal
4
universal technology
4
technology platform
4
platform transfect
4

Similar Publications

The Efficiency of Brain-Derived Neurotrophic Factor Secretion by mRNA-Electroporated Regulatory T Cells Is Highly Impacted by Their Activation Status.

Eur J Immunol

December 2024

Laboratory of Experimental Hematology, Vaccine and Infections Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.

Genetic engineering of regulatory T cells (Tregs) presents a promising avenue for advancing immunotherapeutic strategies, particularly in autoimmune diseases and transplantation. This study explores the modification of Tregs via mRNA electroporation, investigating the influence of T-cell activation status on transfection efficiency, phenotype, and functionality. For this CD45RA Tregs were isolated, expanded, and modified to overexpress brain-derived neurotrophic factor (BDNF).

View Article and Find Full Text PDF

Preclinical studies suggest that irreversible electroporation (IRE) increases the effect of immune checkpoint inhibition in pancreatic cancer (PC). Patients with PC received PD-1 inhibitor pembrolizumab and, on day 10, percutaneous IRE of a liver metastasis. Blood samples were analyzed for immune cell subsets and inflammation related proteins.

View Article and Find Full Text PDF

Pediatric patients with recurrent metastatic neuroblastoma (NB) have a dismal 5-year survival. Novel therapeutic approaches are urgently needed. The melanoma cell adhesion molecule (MCAM/CD146/MUC18) is expressed in a variety of pediatric solid tumors, including NB, and constitutes a novel target for immunotherapy.

View Article and Find Full Text PDF

Background: The branchial epithelium is one of the main tissues in which histone H3K4 trimethylation (H3K4me3) occurs in the budding tunicate, Polyandrocarpa misakiensis. It contains proliferating and undifferentiated cell aggregates at the bottom of each pharyngeal cleft, providing the nest for the adult stem cell niche. We examined the sustainable mechanism enabling epigenetic histone methylation in adult stem cells.

View Article and Find Full Text PDF

Regulatory CD4 T cells redirected against pathogenic CD8 T cells protect NOD mice from development of autoimmune diabetes.

Front Immunol

October 2024

Diabetes Research Group, Division of Infection and Immunity, Systems Immunity University Research Institute, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom.

Introduction: In this study, we report a novel therapeutic approach redirecting antigen-specific CD4 T cells recognizing a hybrid insulin peptide (BDC2.5 T cell receptor (TCR) transgenic CD4 T cells) to attract and suppress islet-specific CD8 T cells T cells in the non-obese diabetic (NOD) mouse model, and prevent the development of autoimmune diabetes.

Methods: Purified BDC2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!