Dopamine Transporter Amino and Carboxyl Termini Synergistically Contribute to Substrate and Inhibitor Affinities.

J Biol Chem

From the Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604 and

Published: January 2017

Extracellular dopamine and serotonin concentrations are determined by the presynaptic dopamine (DAT) and serotonin (SERT) transporters, respectively. Numerous studies have investigated the DAT and SERT structural elements contributing to inhibitor and substrate binding. To date, crystallographic studies have focused on conserved transmembrane domains, where multiple substrate binding and translocation features are conserved. However, it is unknown what, if any, role the highly divergent intracellular N and C termini contribute to these processes. Here, we used chimeric proteins to test whether DAT and SERT N and C termini contribute to transporter substrate and inhibitor affinities. Replacing the DAT N terminus with that of SERT had no effect on DA transport V but significantly decreased DAT substrate affinities for DA and amphetamine. Similar losses in uptake inhibition were observed for small DAT inhibitors, whereas substituting the DAT C terminus with that of SERT affected neither substrate nor inhibitor affinities. In contrast, the N-terminal substitution was completely tolerated by the larger DAT inhibitors, which exhibited no loss in apparent affinity. Remarkably, all affinity losses were rescued in DAT chimeras encoding both SERT N and C termini. The sensitivity to amino-terminal substitution was specific for DAT, because replacing the SERT N and/or C termini affected neither substrate nor inhibitor affinities. Taken together, these findings provide compelling experimental evidence that DAT N and C termini synergistically contribute to substrate and inhibitor affinities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5270474PMC
http://dx.doi.org/10.1074/jbc.M116.762872DOI Listing

Publication Analysis

Top Keywords

substrate inhibitor
20
inhibitor affinities
20
dat
11
termini synergistically
8
synergistically contribute
8
substrate
8
contribute substrate
8
dat sert
8
substrate binding
8
termini contribute
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!