The cell internalization of designed oligoarginine peptides equipped with six glutamic acid residues and an anionic pyranine at the N-terminus is triggered upon addition of a supramolecular host. This host binds specifically to the pyranine moiety, enabling the complex to traverse the cell membrane. Interestingly, none of the components, neither the host nor the guest, are able to cross the cell membrane on their own.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5389450PMC
http://dx.doi.org/10.1021/jacs.6b11103DOI Listing

Publication Analysis

Top Keywords

cell internalization
8
cell membrane
8
anion recognition
4
recognition supramolecular
4
supramolecular switch
4
cell
4
switch cell
4
internalization cell
4
internalization designed
4
designed oligoarginine
4

Similar Publications

Epstein-Barr virus (EBV) establishes persistent infection, causes infectious mononucleosis, is a major trigger for multiple sclerosis and contributes to multiple cancers. Yet, knowledge remains incomplete about how the virus remodels host B cells to support lytic replication. We previously identified that EBV lytic replication results in selective depletion of plasma membrane (PM) B cell receptor (BCR) complexes, composed of immunoglobulin and the CD79A and CD79B signaling chains.

View Article and Find Full Text PDF

is frequently isolated during prosthetic joint infections (PJIs). Unlike , its internalization and persistence within cells are controversial. We aimed to determine whether internalization is involved in the pathophysiology of PJIs.

View Article and Find Full Text PDF

EXO: A Dual-Mechanism Stimulator of Interferon Genes Activator for Cancer Immunotherapy.

ACS Nano

January 2025

Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.

As natural agonists of the stimulator of interferon genes (STING) protein, cyclic dinucleotides (CDNs) can activate the STING pathway, leading to the expression of type I interferons and various cytokines. Efficient activation of the STING pathway in antigen-presenting cells (APCs) and tumor cells is crucial for antitumor immune response. Tumor-derived exosomes can be effectively internalized by APCs and tumor cells and have excellent potential to deliver CDNs to the cytoplasm of APCs and tumor cells.

View Article and Find Full Text PDF

A game of hide-and-seek: how extracellular vesicles evade the immune system.

Drug Deliv Transl Res

January 2025

Department of Bioengineering, Indian Institute of Science, Bengaluru, 560012, India.

Extracellular vesicles (EVs) are heterogeneously sized, cell-derived nanoparticles operating as proficient mediators of intercellular communication. They are produced by normal as well as diseased cells and carry a variety of cargo. While the molecular details of EV biology have been worked out over the past two decades, one question that continues to intrigue many is how are EVs able to evade the phagocytic immune cells while also being effectively internalized by the target cell or tissue.

View Article and Find Full Text PDF

Population structure and ongoing microevolution of the emerging multidrug-resistant Salmonella Typhimurium ST213.

NPJ Antimicrob Resist

April 2024

Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, MOR, Mexico.

Salmonella enterica serovar Typhimurium ST213 is an emergent multidrug-resistant sequence type associated with the food chain, and gastrointestinal and invasive infections in North America. Here, we applied genomic and phenotypic analyses to illustrate the diversity and evolution of sequence type ST213. The population structure and evolutionary history of ST213 strains, particularly the North American isolates (NA-ST213) distinguish them from other S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!