Objective: To assess the frequencies of CYP21A2 gene mutations among patients from Fujian area with classical 21-hydroxylase deficiency.

Methods: For 19 probands from different families affected with classical steroid 21-hydroxylase deficiency and 74 family members, mutations of the CYP21A2 gene were analyzed with combined nested polymerase chain reaction, Sanger sequencing and multiplex ligation-dependent probe amplification. Time resolved fluorescence immunoassay was performed to determine the level of 17-hydroxyprogesterone (17-OHP) in all family members. Clinical data and laboratory results of the probands and their family members were analyzed.

Results: Eleven mutations were identified among the 38 alleles from the 19 probands. 92.1% (35/38) of the mutant CYP21A2 alleles were due to recombination between CYP21A2 and CYP21A1P. Gene conversion and deletions were identified in 84.2% (32/38) and 7.9% (3/38) of the alleles, respectively. IVS2-13A/C>G and chimeras were the most common mutations, which respectively accounted for 34.2% (13/38) and 18.4% (7/38) of all mutant alleles. Among these, IVS2+1G>A and Q318X+356W were first reported in China. 74.3% (55/74) of the family members were carriers of heterozygous mutations. However, no significant difference was found in the 17-OHP levels between carriers and non-carriers (P>0.05).

Conclusion: There seems to be a specific spectrum of CYP21A2 gene mutations in Fujian area, where IVS2-13A/C>G and chimeras are the most common mutations.

Download full-text PDF

Source
http://dx.doi.org/10.3760/cma.j.issn.1003-9406.2016.06.009DOI Listing

Publication Analysis

Top Keywords

cyp21a2 gene
16
family members
16
gene mutations
12
mutations
8
mutations patients
8
classical steroid
8
steroid 21-hydroxylase
8
fujian area
8
ivs2-13a/c>g chimeras
8
chimeras common
8

Similar Publications

Background: Congenital Adrenal Hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD CAH) is an autosomal recessive disorder resulting from pathogenic variants in the CYP21A2 gene. The disorder exhibits variable clinical severity, with the classical form manifesting as salt-wasting crisis in neonates, while inducing ambiguous genitalia in females and precocious puberty in males through simple virilization. Identifying at-risk couples during the preconception stage holds significance for optimizing reproductive choices.

View Article and Find Full Text PDF

Genetics and Pathophysiology of Classic Congenital Adrenal Hyperplasia Due to 21-Hydroxylase Deficiency.

J Clin Endocrinol Metab

January 2025

Division of Pediatric Endocrinology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA.

Congenital adrenal hyperplasia (CAH) is an autosomal recessive disease that manifests clinically in varying forms depending on the degree of enzyme deficiency. CAH is most commonly caused by 21-hydroxylase deficiency (21OHD) due to mutations in the CYP21A2 gene. Whereas there is a spectrum of disease severity, 21OHD is generally categorized into 3 forms.

View Article and Find Full Text PDF

Background: An estimated 17% of all couples worldwide are involuntarily childless (infertile). The clinically identifiable causes of infertility can be found in the male or female partner or in both. The molecular pathophysiology of infertility still remains unclear in many cases but is increasingly being revealed by genetic analyses.

View Article and Find Full Text PDF

Introduction: Hypospermatogenesis is a common histopathological subtype of non-obstructive azoospermia and is characterized by a decrease in the total number of germ cells within the seminiferous tubule as a result of spermatogenic failure. Determination of genetic factors before intracytoplasmic sperm injection can prevent the inheritance of these factors, as hypospermatogenesis patients gives high successful sperm retrieval rate. This study aimed to identify the structural variants associated with idiopathic hypospermatogenesis (iHS) by analyzing patient cohorts diagnosed with azoospermia using whole exome sequencing.

View Article and Find Full Text PDF

High clinical utility of long-read sequencing for precise diagnosis of congenital adrenal hyperplasia in 322 probands.

Hum Genomics

January 2025

Department of Endocrine and Metabolic Diseases, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.

Background: The molecular genetic diagnosis of congenital adrenal hyperplasia (CAH) is very challenging due to the high homology between the CYP21A2 gene and its pseudogene CYP21A1P.

Methodology: This study aims to assess the clinical efficacy of targeted long-read sequencing (T-LRS) by comparing it with a control method based on the combined assay (NGS, Multiplex ligation-dependent probe amplification and Sanger sequencing) and to introduce T-LRS as a first-tier diagnostic test for suspected CAH patients to improve the precise diagnosis of CAH.

Results: A large cohort of 562 participants including 322 probands and 240 family members was enrolled for the perspective (96 probands) and prospective study (226 probands).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!