Preparation and properties of cellulose nanocomposite films with in situ generated copper nanoparticles using Terminalia catappa leaf extract.

Int J Biol Macromol

Centre for Composite Materials, Department of Mechanical Engineering, International Research Centre, Kalasalingam University, Krishnankoil, 626126, Tamilnadu, India.

Published: February 2017

In the present work, copper nanoparticles (CuNPs) were in situ generated inside cellulose matrix using Terminalia catappa leaf extract as a reducing agent. During this process, some CuNPs were also formed outside the matrix. The CuNPs formed outside the matrix were observed with transmission electron microscope (TEM) and scanning electron microscope (SEM). Majority of the CuNPs formed outside the matrix were in the size range of 21-30nm. The cellulose/CuNP composite films were characterized by Fourier transform infrared spectroscopic, X-Ray diffraction and thermogravimetric techniques. The crystallinity of the cellulose/CuNP composite films was found to be lower than that of the matrix indicating rearrangement of cellulose molecules by in situ generated CuNPs. Further, the expanded diffractogram of the composite films indicated the presence of a mixture of Cu, CuO and CuO nanoparticles. The thermal stability of the composites was found to be lower than that of the composites upto 350°C beyond which a reverse trend was observed. This was attributed to the catalytic behaviour of CuNPs for early degradation of the composites. The composite films possessed sufficient tensile strength which can replace polymer packaging films like polyethylene. Further, the cellulose/CuNP composite films exhibited good antibacterial activity against E.coli bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2016.09.114DOI Listing

Publication Analysis

Top Keywords

composite films
20
situ generated
12
cunps formed
12
formed matrix
12
cellulose/cunp composite
12
copper nanoparticles
8
terminalia catappa
8
catappa leaf
8
leaf extract
8
electron microscope
8

Similar Publications

This study introduces a novel method for achieving highly ordered-crystalline InGaO [0 ≤ x ≤ 0.6] thin films on Si substrates at 250 °C using plasma-enhanced atomic-layer-deposition (PEALD) with dual seed crystal layers (SCLs) of γ-AlO and ZnO. Field-effect transistors (FETs) with random polycrystalline InGaO channels (grown without SCLs) show a mobility (µFE) of 85.

View Article and Find Full Text PDF

Rationalizing the role of chemical interactions in the precursor solutions on the structure, morphology, and performance of thin-film CuZnSn(S,Se) (CZTSSe) is key for the development of bifacial and other photovoltaic (PV) device architectures designed by scalable solution-based methods. In this study, we uncover the impact of dimethylformamide (DMF) and isopropanol (IPA) solvent mixtures on cation complexation and rheology of the precursor solution, as well as the corresponding morphology, composition, and PV performance of CZTSSe thin-film grown on fluorine-doped tin oxide (FTO). We find that increasing the proportion of IPA leads to a nonlinear increase in dynamic viscosity due to the strong repulsion between DMF and IPA, which is characterized by an interaction cohesion parameter of 3.

View Article and Find Full Text PDF

Although the Diels-Alder reaction (DA) has garnered significant attention due to its numerous advantages, its long reaction time is a drawback. Herein, we investigated the effects of polarity difference on DA using Layer-by-Layer (LbL) films comprising polycationic polyallylamine hydrochloride and polyanionic poly (styrenesulfonic acid-co-furfuryl methacrylate) [poly (SS--FMA)] as the reaction environment. First, furan composition in poly (SS--FMA) was adjusted to be 19 mol% to achieve good water solubility and layer deposition.

View Article and Find Full Text PDF

Extraction of lignin from lignocellulosic biomass (bagasse) as a green corrosion inhibitor and its potential application of composite metal framework organics in the field of metal corrosion protection.

Int J Biol Macromol

December 2024

Guangxi Colleges and Universities Key Laboratory of surface and interface electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guilin University of Technology, Guilin 541004, China. Electronic address:

With increasing awareness of environmental protection, additional attention has been given to environmentally friendly metal anticorrosion research. In this paper, the green organic corrosion inhibitor sodium lignosulfonate (SLS) was extracted from bagasse waste, and a Ce-MOF@SLS smart anticorrosive film containing the inhibitor was prepared on the surface of an aluminum alloy by in situ electrodeposition. The material was characterized by SEM, EDS, FT-IR, XRD and XPS, and its corrosion resistance was tested with EIS and neutral salt spray tests.

View Article and Find Full Text PDF

Versatile electrospun cobalt-doped carbon films for rapid antibiotic degradation.

J Environ Manage

December 2024

College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China. Electronic address:

This study presents a novel approach to water contamination remediation by developing cobalt-doped carbon nanofiber films using electrospun ZIF-67 precursors, aiming to degrade tetracycline hydrochloride (TCH) and other antibiotics. This method uniquely combines the advantages of metal-organic frameworks (MOFs) and electrospinning to enhance catalytic performance, demonstrating significant innovation in environmental catalysis. The research systematically evaluated the impact of various factors on the catalytic activity of carbonized PAN@ZIF-67 films (CPZF), including carbonization temperature, ZIF-67 content, and PMS dosage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!