Using Similarity Metrics to Quantify Differences in High-Throughput Data Sets: Application to X-ray Diffraction Patterns.

ACS Comb Sci

U.S. Army Research Laboratory Weapons and Materials Research Directorate Aberdeen Proving Ground, Maryland 21005, United States.

Published: January 2017

The objective of this research is to demonstrate how similarity metrics can be used to quantify differences between sets of diffraction patterns. A set of 49 similarity metrics is implemented to analyze and quantify similarities between different Gaussian-based peak responses, as a surrogate for different characteristics in X-ray diffraction (XRD) patterns. A methodological approach was used to identify and demonstrate how sensitive these metrics are to expected peak features. By performing hierarchical clustering analysis, it is shown that most behaviors lead to unrelated metric responses. For instance, the results show that the Clark metric is consistently one of the most sensitive metrics to synthetic single peak changes. Furthermore, as an example of its utility, a framework is outlined for analyzing structural changes because of size convergence and isotropic straining, as calculated through the virtual XRD patterns.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acscombsci.6b00142DOI Listing

Publication Analysis

Top Keywords

similarity metrics
12
metrics quantify
8
quantify differences
8
x-ray diffraction
8
diffraction patterns
8
xrd patterns
8
sensitive metrics
8
differences high-throughput
4
high-throughput data
4
data sets
4

Similar Publications

Clustering Cu-S based compounds using periodic table representation and compositional Wasserstein distance.

Sci Rep

December 2024

Key Laboratory of Computing Power Network and Information Security, Shandong Computer Science Center (National Supercomputing Center in Jinan), Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, Shandong, P. R. China.

Crystal structure similarity is useful for the chemical analysis of nowadays big materials databases and data mining new materials. Here we propose to use two-dimensional Wasserstein distance (earth mover's distance) to measure the compositional similarity between different compounds, based on the periodic table representation of compositions. To demonstrate the effectiveness of our approach, 1586 Cu-S based compounds are taken from the inorganic crystal structure database (ICSD) to form a validation dataset.

View Article and Find Full Text PDF

Manual segmentation of lesions, required for radiotherapy planning and follow-up, is time-consuming and error-prone. Automatic detection and segmentation can assist radiologists in these tasks. This work explores the automated detection and segmentation of brain metastases (BMs) in longitudinal MRIs.

View Article and Find Full Text PDF

Robust multi-source geographic entities matching by maximizing geometric and semantic similarity.

Sci Rep

December 2024

Department of Geographic Information System, Chinese Academy of Surveying and mapping, Beijing, 100036, China.

Geographic entity matching is an important means for multi-source spatial data fusion and information association and sharing. Corresponding matching methods have been designed by existing studies for different types of entity data characteristics, such as line and area. However, these approaches are often limited in the generalization ability for matching heterogeneous data from multiple sources and the accuracy for complex pattern matching.

View Article and Find Full Text PDF

Algorithmic individual fairness and healthcare: a scoping review.

JAMIA Open

February 2025

Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA 15213, United States.

Objectives: Statistical and artificial intelligence algorithms are increasingly being developed for use in healthcare. These algorithms may reflect biases that magnify disparities in clinical care, and there is a growing need for understanding how algorithmic biases can be mitigated in pursuit of algorithmic fairness. We conducted a scoping review on algorithmic individual fairness (IF) to understand the current state of research in the metrics and methods developed to achieve IF and their applications in healthcare.

View Article and Find Full Text PDF

Study Objectives: Polysomnography (PSG) currently serves as the benchmark for evaluating sleep disorders. Its discomfort makes long-term monitoring unfeasible, leading to bias in sleep quality assessment. Hence, less invasive, cost-effective, and portable alternatives need to be explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!