We report the genome of a novel human triple-recombinant G4P[6-8_R] mono-reassortant strain identified in a stool sample from the Dominican Republic during routine facility-based rotavirus strain surveillance. The strain was designated as RVA/Human-wt/DOM/2013840364/2013/G4P[6-8_R], with a genomic constellation of G4-P[6-8_R]-I1-R1-C1-M1-(A1-A8_R)-N1-(T1-T7_R)-E1-H1. Recombinant gene segments NSP1 and NSP3 were generated as a result of recombination between genogroup 1 rotavirus A1 human strain and a genotype A8 porcine strain and between genogroup 1 rotavirus T1 human strain and a genotype T7 bovine strain, respectively. Analyses of the RNA secondary structures of gene segment VP4, NSP1 and NSP3 showed that all the recombinant regions appear to start in a loop (single-stranded) region and terminate in a stem (double-stranded) structure. Also, the VP7 gene occupied lineage VII within the G4 genotypes consisting of mostly porcine or porcine-like G4 strains, suggesting the occurrence of reassortment. The remaining gene segments clustered phylogenetically with genogroup 1 strains. This exchange of whole or partial genetic materials between rotaviruses by recombination and reassortment contributes directly to their diversification, adaptation and evolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5720362 | PMC |
http://dx.doi.org/10.1099/jgv.0.000688 | DOI Listing |
J Mammary Gland Biol Neoplasia
January 2025
Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.
View Article and Find Full Text PDFVet Res Commun
January 2025
Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta N 36 Km 601, Río Cuarto City, 5800, Córdoba, Argentina.
Post-weaning diarrhea (PWD) is a major concern for pig producers, as stress and early weaning increase susceptibility to enteropathogens like enterotoxigenic Escherichia coli (ETEC) and Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium).
View Article and Find Full Text PDFCurr Microbiol
January 2025
Unit of Microbiology and Immunology, ICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India.
In recent years, there has been a global threat from emerging vector-borne diseases (VBD), despite the implementation of several vector control programs. Considering the benefits of bacterial pesticides, the present study aimed to isolate potential mosquitocidal bacteria from the various soil types collected from the Kasaragod (12.5°N, 75.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Microbiology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
An aerobic, Gram-stain-positive, motile, coccus-shaped actinomycete, designated strain LSe6-4, was isolated from leaves of sea purslane (Sesuvium portulacastrum L.) in Thailand and subjected to a polyphasic taxonomic studies. Growth of the strain occurred at temperatures between 15 and 38 °C, and with NaCl concentrations 0-13%.
View Article and Find Full Text PDFBioprocess Biosyst Eng
January 2025
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
p-Coumaric acid (p-CA), an invaluable phytochemical, has novel bioactivities, including antiproliferative, anxiolytic, and neuroprotective effects, and is the main precursor of various flavonoids, such as caffeic acid, naringenin, and resveratrol. Herein, we report the engineering of Escherichia coli for de novo production of p-CA via the PAL-C4H pathway. As the base strain, we used the E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!