A novel non-phototrophic, marine, sulfur-oxidizing bacterium, strain S-1T, was isolated from a coastal salt marsh in Massachusetts, USA. Cells are Gram-stain-negative vibrios motile by means of a single polar unsheathed flagellum. S-1T is an obligate microaerophile with limited metabolic capacity. It grows chemolithoautotrophically utilizing sulfide and thiosulfate as electron donors, converting these compounds to sulfate, and the Calvin-Benson-Bassham cycle for carbon fixation. Cells of S-1T did not grow on any of a large number of organic carbon sources and there was no evidence for chemoorganoheterotrophic growth. Cells produced internal sulfur globules during growth on sulfide and thiosulfate. S-1T is strongly diazotrophic, as demonstrated by 15N2 fixation and acetylene reduction activity by cells when a fixed nitrogen source is absent from the growth medium. The marine nature of this organism is evident from its ability to grow in 10 to 100 % artificial seawater but not at lower concentrations and NaCl alone cannot substitute for sea salts. The major cellular fatty acids are C16 : 1ω7c, C16 : 0, and C18 : 1ω7c. Phosphatidylethanolamine and phosphatidylglycerol are the major polar lipids. Q8 is the only respiratory quinone. S-1T genomic DNA has a G+C content of 67.6 mol%. Based on its 16S rRNA gene sequence, S-1T shows the closest phylogenetic relationship to non-phototrophic species within the family Thioalkalispiraceae of the class Gammaproteobacteria. The name Endothiovibrio diazotrophicus is proposed for this organism, with S-1T as the type strain (ATCC BAA-1439T=JCM 17961T).

Download full-text PDF

Source
http://dx.doi.org/10.1099/ijsem.0.001743DOI Listing

Publication Analysis

Top Keywords

endothiovibrio diazotrophicus
8
salt marsh
8
sulfide thiosulfate
8
s-1t
7
diazotrophicus gen
4
gen nov
4
nov nov
4
nov novel
4
novel nitrogen-fixing
4
nitrogen-fixing sulfur-oxidizing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!