Solid organ transplantation is an established treatment modality in patients with end-stage organ damage in cases where other therapeutic options fail. The long-term outcomes of solid organ transplant recipients have improved considerably since the introduction of the first calcineurin inhibitor (CNI) - cyclosporine. In 1984, the potent immunosuppressive properties of another CNI, tacrolimus, were discovered. The immunosuppressive effects of CNIs result from the inhibition of interleukin-2 synthesis and reduced proliferation of T cells due to calcineurin blockade. The considerable side effects that are associated with CNIs therapy include arterial hypertension and nephrotoxicity. The focus of this article was to review the available literature on the pathophysiological mechanisms of CNIs that induce chronic nephrotoxicity and arterial hypertension. CNIs lead to activation of the major vasoconstriction systems, such as the renin-angiotensin and endothelin systems, and increase sympathetic nerve activity. On the other hand, CNIs are known to inhibit NO synthesis and NO-mediated vasodilation and to increase free radical formation. Altogether, these processes cause endothelial dysfunction and contribute to the impairment of organ function. A better insight into the mechanisms underlying CNI nephrotoxicity could assist in developing more targeted therapies of arterial hypertension or preventing CNI nephrotoxicity in organ transplant recipients, including heart transplantation.

Download full-text PDF

Source
http://dx.doi.org/10.33549/physiolres.933332DOI Listing

Publication Analysis

Top Keywords

arterial hypertension
16
pathophysiological mechanisms
8
nephrotoxicity arterial
8
solid organ
8
organ transplant
8
transplant recipients
8
cni nephrotoxicity
8
nephrotoxicity
5
organ
5
cnis
5

Similar Publications

Purpose: To compare the efficac and safety of a dual-blade 20,000 cuts per minute (cpm) vitrectomy probe with a single-blade 10,000 cpm probe for primary rhegmatogenous retinal detachment (RRD).

Study Design: Prospective, randomized controlled clinical trial.

Methods: Evaluations were conducted preoperatively, intraoperatively, and at three months postoperatively.

View Article and Find Full Text PDF

Valsartan (VST) is an angiotensin II receptor antagonist with low oral bioavailability. The present study developed a solid self-nanoemulsifying drug delivery system (S-SNEDDS) to enhance the oral absorption and bioavailability of VST. VST-loaded liquid SNEDDS (VST@L-SNEDDS) was prepared by investigating the solubility of VST and constructing the pseudo-ternary phase diagrams.

View Article and Find Full Text PDF

CT angiography of acute aortic syndrome in patients with chronic kidney disease.

Int J Cardiovasc Imaging

January 2025

Department of Clinical Radiology, AHEPA University Hospital of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece.

The term acute aortic syndrome (AAS) refers to a range of different entities, including dissection, intramural haematoma and penetrating atherosclerotic ulcer. Patients with chronic renal disease and particularly those with dominant polycystic kidney disease are susceptible to this pathology, given the underlying renal arteriopathy and hypertension. Imaging plays a crucial role in diagnosing, grading and guiding management of these patients, with computed tomography angiography (CTA) being on the frontline.

View Article and Find Full Text PDF

Recent empirical investigations reinforce the understanding of a profound interconnection between metabolic functions and Obstructive Sleep Apnea-hypopnea Syndrome (OSAHS). This study identifies distinctive miRNA signatures in OSAHS with Metabolic Syndrome (Mets) patients from healthy subjects, that could serve as diagnostic biomarkers or describe differential molecular mechanisms with potential therapeutic implications. In this study, OSAHS with MetS patients showed significantly higher Apnea Hyponea Index(AHI), but lower oxygen desaturation index(ODI 4/h) and minimum pulse oxygen saturation(SpO).

View Article and Find Full Text PDF

The brainstem plays a vital role in regulating blood pressure, and disruptions to its neural pathways have been linked to hypertension. However, it remains unclear whether subtle microstructural changes in the brainstem are associated with an individual's blood pressure status. This exploratory, cross-sectional study investigated the relationship between brainstem microstructure, myelination, and hypertensive status in 116 cognitively unimpaired adults (aged 22-94 years).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!