The weak-value-based metrology is very promising and has attracted a lot of attention in recent years because of its remarkable ability in signal amplification. However, it is suggested that the upper limit of the precision of this metrology cannot exceed that of classical metrology because of the low sample size caused by the probe loss during postselection. Nevertheless, a recent proposal shows that this probe loss can be reduced by the power-recycling technique, and thus enhance the precision of weak-value-based metrology. Here we experimentally realize the power-recycled interferometric weak-value-based beam-deflection measurement and obtain the amplitude of the detected signal and white noise by discrete Fourier transform. Our results show that the detected signal can be strengthened by power recycling, and the power-recycled weak-value-based signal-to-noise ratio can surpass the upper limit of the classical scheme, corresponding to the shot-noise limit. This work sheds light on higher precision metrology and explores the real advantage of the weak-value-based metrology over classical metrology.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.117.230801DOI Listing

Publication Analysis

Top Keywords

weak-value-based metrology
16
higher precision
8
precision weak-value-based
8
metrology
8
power recycling
8
upper limit
8
precision metrology
8
classical metrology
8
probe loss
8
detected signal
8

Similar Publications

The weak-value-based metrology is very promising and has attracted a lot of attention in recent years because of its remarkable ability in signal amplification. However, it is suggested that the upper limit of the precision of this metrology cannot exceed that of classical metrology because of the low sample size caused by the probe loss during postselection. Nevertheless, a recent proposal shows that this probe loss can be reduced by the power-recycling technique, and thus enhance the precision of weak-value-based metrology.

View Article and Find Full Text PDF

We improve the precision of the interferometric weak-value-based beam deflection measurement by introducing a power recycling mirror, creating a resonant cavity. This results in all the light exiting to the detector with a large deflection, thus eliminating the inefficiency of the rare postselection. The signal-to-noise ratio of the deflection is itself magnified by the weak value.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!