Interactions between fluorophores and plasmonic nanoparticles modify the fluorescence intensity, shape, and position of the observed emission pattern, thus inhibiting efforts to optically super-resolve plasmonic nanoparticles. Herein, we investigate the accuracy of localizing dye fluorescence as a function of the spectral and spatial separations between fluorophores (Alexa 647) and gold nanorods (NRs). The distance at which Alexa 647 interacts with NRs is varied by layer-by-layer polyelectrolyte deposition while the spectral separation is tuned by using NRs with varying localized surface plasmon resonance (LSPR) maxima. For resonantly coupled Alexa 647 and NRs, emission to the far field through the NR plasmon is highly prominent, resulting in underestimation of NR sizes. However, we demonstrate that it is possible to improve the accuracy of the emission localization when both the spectral and spatial separations between Alexa 647 and the LSPR are optimized.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.6b02569DOI Listing

Publication Analysis

Top Keywords

alexa 647
16
spectral spatial
12
plasmonic nanoparticles
12
spatial separations
8
optimization spectral
4
spatial conditions
4
conditions improve
4
improve super-resolution
4
super-resolution imaging
4
imaging plasmonic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!