Low-Temperature Solution-Processed SnO Nanoparticles as a Cathode Buffer Layer for Inverted Organic Solar Cells.

ACS Appl Mater Interfaces

School of Advanced Materials Engineering and Research Center of Advanced Materials Development, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.

Published: January 2017

SnO recently has attracted particular attention as a powerful buffer layer for organic optoelectronic devices due to its outstanding properties such as high electron mobility, suitable band alignment, and high optical transparency. Here, we report on facile low-temperature solution-processed SnO nanoparticles (NPs) in applications for a cathode buffer layer (CBL) of inverted organic solar cells (iOSCs). The conduction band energy of SnO NPs estimated by ultraviolet photoelectron spectroscopy was 4.01 eV, a salient feature that is necessary for an appropriate CBL. Using SnO NPs as CBL derived from a 0.1 M precursor concentration, P3HT:PCBM-based iOSCs showed the best power conversion efficiency (PCE) of 2.9%. The iOSC devices using SnO NPs as CBL revealed excellent long-term device stabilities, and the PCE was retained at ∼95% of its initial value after 10 weeks in ambient air. These solution-processed SnO NPs are considered to be suitable for the low-cost, high throughput roll-to-roll process on a flexible substrate for optoelectronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b10857DOI Listing

Publication Analysis

Top Keywords

sno nps
16
solution-processed sno
12
buffer layer
12
low-temperature solution-processed
8
sno nanoparticles
8
cathode buffer
8
inverted organic
8
organic solar
8
solar cells
8
optoelectronic devices
8

Similar Publications

Oxygenated VOC Detection Using SnO Nanoparticles with Uniformly Dispersed BiO.

Nanomaterials (Basel)

December 2024

Department of Advanced Materials Science and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga 816-8580, Fukuoka, Japan.

BiO particles are introduced as foreign additives onto SnO nanoparticles (NPs) surfaces for the efficient detection of oxygenated volatile organic compounds (VOCs). BiO-loaded SnO materials are prepared via the impregnation method followed by calcination treatment. The abundant BiO/SnO interfaces are constructed by the uniform dispersion of BiO particles on the SnO surface.

View Article and Find Full Text PDF

Dual-mode detection of human immunoglobulin via copper oxide nanozyme catalysis fluorescent species generation and photoelectrochemical alteration in ZnInS/SnO-based system.

Anal Chim Acta

January 2025

Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China. Electronic address:

Human immunoglobulin (HIgG) has gained recognition as a crucial biomarker diagnosing and treating various diseases, particularly in identifying elevated serum levels in conditions like measles and pneumococcal disease. Traditional detection methods, however, are often hindered by inefficiencies, high costs, and potential inaccuracies, underscoring the urgent need for more sensitive, efficient, accurate, and self-calibration methods for HIgG. Here, a novel ZnInS/SnO composites was synthesized, featuring uniformly dispersed SnO nanoparticles on the flower-like ZnInS structure, resulting in a type II heterojunction that promotes the separation and transfer of photogenerated carriers.

View Article and Find Full Text PDF
Article Synopsis
  • - Atomically precise metal nanoclusters (NCs) are interesting for their unique structures and catalytic potential, but they have issues like instability and self-aggregation.
  • - This research presents a method to stabilize metal NCs by anchoring them to a metal oxide matrix, creating a hollow core-shell structure through thermal treatment.
  • - The resulting metal NPs@metal oxide heterostructures show improved catalytic activity and stability for reducing aromatic nitro compounds, suggesting a new approach to utilize the instability of metal NCs in catalysis.
View Article and Find Full Text PDF

This study investigates a class of materials known as polymer nanodielectrics, which are formed by incorporating ceramic fillers into polymers. These materials offer the unique advantage of tunable electrical and optical properties. The research focuses on the incorporation of high-purity stannic oxide nanoparticles (SnO NPs) into a ternary blend matrix of hydroxypropyl methylcellulose (HPMC) and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) using a solution casting method.

View Article and Find Full Text PDF

Tandem Upgrading of Bio-Furans to Benzene, Toluene, and p-xylene by PtSn Intermetallic Coupling Ordered Mesoporous SnO Catalyst.

Adv Mater

November 2024

State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.

Benzene, toluene, and p-xylene (BTpX) are among the most important commodity chemicals, but their productions still heavily rely on fossil resources and thus pose serious environmental burdens and energy crisis. Herein, the tandem upgrading of bio-furans is reported to high-yield BTpX by rationally constructing a versatile PtSn intermetallic coupling ordered-mesoporous SnO (OM-SnO) catalyst. It is shown that with increasing reduction temperature from 200 to 350°C, Pt nanoparticles (NPs) are first formed on OM-SnO, then converted to PtSn intermetallic nanoparticles (iNPs), and finally to PtSn iNPs with a gradually-thickened SnO overlayer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!