Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The directed assembly of micro-/nanoscale objects relies on physical or chemical processes to generate structures that are not possible via self-assembly alone. A relatively unexplored strategy in directed assembly is the "active" manipulation of building blocks through deformations of elastomeric substrates. This manuscript reports a method which uses macroscopic mechanical deformations of chemically modified silicone films to realize the rational assembly of microscopic polymer structures. Specifically, polystyrene microparticles are deposited onto polydimethylsiloxane substrates using microcontact-printing where, through a process that involved stretching/relaxing the substrates and bonding of the particles, they are elaborated into microstructures of various sizes, shapes, symmetries, periodicities, and functionalities. The resulting polymeric microstructures can be released and redeposited onto planar/nonplanar surfaces. When building blocks with different properties (e.g., those with fluorescent and catalytic properties) are used, it is possible to fabricate structures with heterogeneous functionality. This method can be extended to the assembly of numerous micro-/nanoscale building blocks (e.g., colloidal organic/inorganic materials) with rational control over the size, shape, and functionality of the product. As a strategy, the use of substrate deformations to enable the micromanipulation and fabrication of a potentially diverse set of assemblies represents a powerful tool useful to, for example, nanotechnology and micromanufacturing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201603350 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!