The morphology, microhardness and dentin permeability of the furcation region of maxillary premolars were evaluated. Ten premolars were cut lengthwise and the furcation region was delimited. In one group (n=10) microhardness was measured in the buccal, central and palatal regions, in the outer middle and inner layers of the furcation, and in the buccal and palatal regions adjacent to the furcation. Knoop hardness was tested with 10 g load for 15 s. Data were analyzed statistically by ANOVA and Tukey-Kramer test (a=0.05). In the other group (n=10) confocal microscopy was used to study dentin morphology. Other 10 specimens were instrumented with ProTaper and immersed in 10% copper sulfate for analysis of permeability under light microscopy. About microhardness, there was no significant difference (p>0.05) among the buccal (39.9±3.1), central (39.5±4.4) and palatal (39.7±5.0) regions of the furcation, or between these regions and the adjacent buccal (39.1±5.8) and palatal (39.7±5.8) regions (p>0.05). The inner layer (42.3±3.7) had significantly higher microhardness (p<0.05) than the outer layer (37.1±3.9). There was a tendency of calcification of the dentinal tubules from the outer towards the inner layer. The percentage of stained area was 12.45±2.0%, restricted to the outer layer. The buccal, central and palatal regions of the furcation as well as the buccal and palatal adjacent regions had similar microhardness values. In conclusion, the inner dentin layer is harder than the outer dentin layer. The dentinal tubules are sinuous and intertwine towards the middle layer. Dye penetration is restricted to the outer layer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/0103-6440201600935 | DOI Listing |
Ann Bot
June 2024
Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito sn de Ciudad Universitaria, Ciudad de México 04510, Mexico.
Background: The mechanisms leading to dieback and death of trees under drought remain unclear. To gain an understanding of these mechanisms, addressing major empirical gaps regarding tree structure-function relations remains essential.
Scope: We give reasons to think that a central factor shaping plant form and function is selection simultaneously favouring constant leaf-specific conductance with height growth and isometric (1:1) scaling between leaf area and the volume of metabolically active sink tissues ('sapwood').
Indian J Dent Res
January 2024
Department of Pediatrics and Preventive Dentistry, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India.
Purpose: Multiple accessory canals make furcation area of primary molars the most common port of entry of bacterial endotoxins to periradicular area. Reduction in permeability can improve prognosis of these teeth. Therefore, this study was designed to compare the effect of 940 nm diode laser and dentin bonding agent on the dye penetration of furcation area in primary molars.
View Article and Find Full Text PDFMater Horiz
August 2022
Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China.
Mimicking complex structures of natural blood vessels and constructing vascular networks in tissue engineering scaffolds are still challenging now. Herein we demonstrate a new and versatile strategy to fabricate free-standing multi-furcated vessels and complicated vascular networks in heterogeneous porous scaffolds by integrating stimuli-responsive hydrogels and 3D printing technology. Through the sol-gel transition of temperature-responsive gelatin and conversion between two physical crosslinking networks of pH-responsive chitosan (, electrostatic network between protonated chitosan and sulfate ion, crystalline network of neutral chitosan), physiologically-stable gelatin/chitosan hydrogel tubes can be constructed.
View Article and Find Full Text PDFTissue Eng Regen Med
August 2022
Department of Dental Biomaterials, Faculty of Dentistry, Mansoura University, Elgomhouria St., Mansoura, 35516, Egypt.
Background: Dentin is a permeable tubular composite and complex structure, and in weight, it is composed of 20% organic matrix, 10% water, and 70% hydroxyapatite crystalline matrix. Demineralization of dentin with gradient concentrations of ethylene diamine tetraacetic acid, 0.6 N hydrochloric acid, or 2% nitric acid removes a major part of the crystalline apatite and maintains a majority of collagen type I and non-collagenous proteins, which creates an osteoinductive scaffold containing numerous matrix elements and growth factors.
View Article and Find Full Text PDFInt J Mol Sci
January 2017
Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8651, Japan.
Antimicrobial photodynamic therapy (aPDT) has been proposed as an adjunctive strategy for periodontitis treatments. However, use of aPDT for periodontal treatment is complicated by the difficulty in accessing morphologically complex lesions such as furcation involvement, which the irradiation beam (which is targeted parallel to the tooth axis into the periodontal pocket) cannot access directly. The aim of this study was to validate a modified aPDT method that photosensitizes indocyanine green-loaded nanospheres through the gingivae from outside the pocket using a diode laser.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!