Recent advances in stem cell research have resulted in methods to generate kidney organoids from human pluripotent stem cells (hPSCs), which contain cells of multiple lineages including nephron epithelial cells. Methods to purify specific types of cells from differentiated hPSCs, however, have not been established well. For bioengineering, cell transplantation, and disease modeling, it would be useful to establish those methods to obtain pure populations of specific types of kidney cells. Here, we report a simple two-step differentiation protocol to generate kidney tubular organoids from hPSCs with direct purification of KSP (kidney specific protein)-positive cells using anti-KSP antibody. We first differentiated hPSCs into mesoderm cells using a glycogen synthase kinase-3β inhibitor for 3 days, then cultured cells in renal epithelial growth medium to induce KSP+ cells. We purified KSP+ cells using flow cytometry with anti-KSP antibody, which exhibited characteristics of all segments of kidney tubular cells and cultured KSP+ cells in 3D Matrigel, which formed tubular organoids in vitro. The formation of tubular organoids by KSP+ cells induced the acquisition of functional kidney tubules. KSP+ cells also allowed for the generation of chimeric kidney cultures in which human cells self-assembled into 3D tubular structures in combination with mouse embryonic kidney cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5159864 | PMC |
http://dx.doi.org/10.1038/srep38353 | DOI Listing |
The MiT/TFE family gene fusion proteins, such as , drive both epithelial (eg, translocation renal cell carcinoma, tRCC) and mesenchymal (eg, perivascular epithelioid cell tumor, PEComa) neoplasms with aggressive behavior. However, no prior mouse models for -related tumors exist and the mechanisms of lineage plasticity induced by this fusion remain unclear. Here, we demonstrate that constitutive murine renal expression of human using Ksp Cadherin-Cre as a driver disrupts kidney development leading to early neonatal renal failure and death.
View Article and Find Full Text PDFCancers (Basel)
November 2024
UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal.
Eur J Med Chem
January 2025
School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, China. Electronic address:
Kinesin spindle protein (KSP) plays a crucial role during mitosis, making it an attractive target for cancer treatment. Herein, we report the design, synthesis, and evaluation of the first series of KSP degraders by using the utilization of the proteolysis-targeting chimera (PROTAC) technology. Compound 21 was identified as a potent KSP degrader with a DC (concentration causing 50 % of protein degradation) value of 114.
View Article and Find Full Text PDFNature
November 2024
Gladstone Institutes, San Francisco, CA, USA.
Chronic inflammation and tissue fibrosis are common responses that worsen organ function, yet the molecular mechanisms governing their cross-talk are poorly understood. In diseased organs, stress-induced gene expression changes fuel maladaptive cell state transitions and pathological interaction between cellular compartments. Although chronic fibroblast activation worsens dysfunction in the lungs, liver, kidneys and heart, and exacerbates many cancers, the stress-sensing mechanisms initiating transcriptional activation of fibroblasts are poorly understood.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, 10065, NY, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!