The objective of the present work was the search for the theoretical foundations and the approaches to the assessment of the methodological basis for the application of the spectral analysis to the investigation of the functional-dynamic complexes (FDC) of oral speech skills for the medical criminalistic identification of the speaker. The study included the analysis of the relevant literature publications, methodological proposals of the authors of the present article, and the results of their medical criminalistics investigations and laboratory experiments. The results of the study give evidence that the spectral analysis provides an acceptable tool for distinguishing the stable identification signs of a given acoustic group that characterize the functional-dynamic complexes of oral speech skills skills for the medical criminalistic identification of the speaker.

Download full-text PDF

Source
http://dx.doi.org/10.17116/sudmed201659638-40DOI Listing

Publication Analysis

Top Keywords

spectral analysis
12
functional-dynamic complexes
12
oral speech
12
speech skills
12
skills medical
12
medical criminalistic
12
criminalistic identification
12
investigation functional-dynamic
8
complexes oral
8
identification speaker
8

Similar Publications

Hyperspectral images are rich in spectral and spatial information, providing a detailed and comprehensive description of objects, which makes hyperspectral image analysis technology essential in intelligent agriculture. With various corn seed varieties exhibiting significant internal structural differences, accurate classification is crucial for planting, monitoring, and consumption. However, due to the large volume and complex features of hyperspectral corn image data, existing methods often fall short in feature extraction and utilization, leading to low classification accuracy.

View Article and Find Full Text PDF

Purpose: Systemic sclerosis (SSc) affects blood vessels, internal organs, and skin. In ophthalmology, SSc impacts the choroid. The choroidal vascularity index (CVI) measures the vascular component of the choroid and may serve as a biomarker for the disease staging and prognosis.

View Article and Find Full Text PDF

Bioimaging probes based on carbon dots (CDs) can become a useful replacement for existing commercial probes, benefiting clinical diagnostics. While the development of dual-mode CD-based probes for magnetic resonance imaging (MRI), which provides the ability for photoluminescence (PL) detection at the same time, is ongoing, several challenges have to be addressed. First, most of the CD-based probes still emit at shorter wavelengths (blue/green spectral range), which is harmful to biological objects or have very low PL intensity in the biological window of tissue transparency (red/near-infrared spectral range).

View Article and Find Full Text PDF

DNA phenotyping plays a central role in modern practical forensics, yet an overwhelming amount of evidence creates significant backlogs in all major crime laboratories. A fast nondestructive test of a potential biological stain prior to DNA phenotyping should reduce the number of irrelevant samples for the analysis and increase the efficiency of the overall process. Evidence items recovered from the crime scene can often include body fluid traces, such as oral fluid (OF).

View Article and Find Full Text PDF

Computational tools, particularly electromagnetic (EM) solvers, are now commonplace in antenna design. While ensuring reliability, EM simulations are time-consuming, leading to high costs associated with EM-driven procedures like parametric optimization or statistical design. Various techniques have been developed to address this issue, with surrogate modeling methods garnering particular attention due to their potential advantages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!