In this data report we discuss reprocessing of the Space Technology 5 (ST5) magnetometer database for inclusion in NASA's Coordinated Data Analysis Web (CDAWeb) virtual observatory. The mission consisted of three spacecraft flying in elliptical orbits, from 27 March to 27 June 2006. Reprocessing includes (1) transforming the data into the Modified Apex Coordinate System for projection to a common reference altitude of 110 km, (2) correcting gain jumps, and (3) validating the results. We display the averaged magnetic perturbations as a keogram, which allows direct comparison of the full-mission data with the solar wind values and geomagnetic indices. With the data referenced to a common altitude, we find the following: (1) Magnetic perturbations that track the passage of corotating interaction regions and high-speed solar wind; (2) unexpectedly strong dayside perturbations during a solstice magnetospheric sawtooth oscillation interval characterized by a radial interplanetary magnetic field (IMF) component that may have enhanced the accompanying modest southward IMF; and (3) intervals of reduced magnetic perturbations or "calms," associated with periods of slow solar wind, interspersed among variable-length episodic enhancements. These calms are most evident when the IMF is northward or projects with a northward component onto the geomagnetic dipole. The reprocessed ST5 data are in very good agreement with magnetic perturbations from the Defense Meteorological Satellite Program (DMSP) spacecraft, which we also map to 110 km. We briefly discuss the methods used to remap the ST5 data and the means of validating the results against DMSP. Our methods form the basis for future intermission comparisons of space-based magnetometer data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5125408PMC
http://dx.doi.org/10.1002/2014EA000057DOI Listing

Publication Analysis

Top Keywords

solar wind
16
magnetic perturbations
16
space technology
8
data
8
st5 data
8
magnetic
5
perturbations
5
large-scale view
4
view space
4
technology magnetometer
4

Similar Publications

The Voyager 2 flyby of Uranus in 1986 revealed an unusually oblique and off-centred magnetic field. This single in situ measurement has been the basis of our interpretation of Uranus's magnetosphere as the canonical extreme magnetosphere of the solar system; with inexplicably intense electron radiation belts and a severely plasma-depleted magnetosphere. However, the role of external forcing by the solar wind has rarely been considered in explaining these observations.

View Article and Find Full Text PDF

This paper presents a novel approach to modeling and controlling a solar photovoltaic conversion system(SPCS) that operates under real-time weather conditions. The primary contribution is the introduction of an uncertain model, which has not been published before, simulating the SPCS's actual functioning. The proposed robust control strategy involves two stages: first, modifying the standard Perturb and Observe (P&O) algorithm to generate an optimal reference voltage using real-time measurements of temperature, solar irradiance, and wind speed.

View Article and Find Full Text PDF

Techno-economic dataset for energy market and capacity payment co-optimization in the Dominican Republic's power market.

Data Brief

February 2025

Área de Ciencias Básicas, Instituto Tecnológico de Santo Domingo, 49 Los Próceres Avenue, Santo Domingo 10602, Dominican Republic.

The electric power industry has an impact on fossil fuel consumption, which must be considered in decarbonization strategies. Energy systems optimization modelling can be applied to evaluate policy scenarios in the power sector to accelerate energy transitions. These modelling tools need data to simulate different scenarios in the power system to clarify the design of energy policies.

View Article and Find Full Text PDF

Advanced microgrid optimization using price-elastic demand response and greedy rat swarm optimization for economic and environmental efficiency.

Sci Rep

January 2025

Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.

In this paper, a comprehensive energy management framework for microgrids that incorporates price-based demand response programs (DRPs) and leverages an advanced optimization method-Greedy Rat Swarm Optimizer (GRSO) is proposed. The primary objective is to minimize the generation cost and environmental impact of microgrid systems by effectively scheduling distributed energy resources (DERs), including renewable energy sources (RES) such as solar and wind, alongside fossil-fuel-based generators. Four distinct demand response models-exponential, hyperbolic, logarithmic, and critical peak pricing (CPP)-are developed, each reflecting a different price elasticity of demand.

View Article and Find Full Text PDF

Solar driven energetic particle precipitation (EPP) is an important factor in polar atmospheric ozone balance and has been linked to ground-level regional climate variability. However, the linking mechanism has remained ambiguous. The observed and simulated ground-level changes start well before the processes from the main candidate, the so-called EPP-indirect effect, would start.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!