Polymer microcapsules are of particular interest for applications including self-healing coatings, catalysis, bioreactions, sensing, and drug delivery. The primary way that polymer capsules can exhibit functionality relevant to these diverse fields is through the incorporation of functional cargo in the capsule cavity or wall. Diverse functional and therapeutic cargo can be loaded into polymer capsules with ease using polymer-stabilized calcium carbonate (CaCO) particles. A variety of examples are demonstrated, including 15 types of cargo, yielding a toolbox with effectively 500+ variations. This process uses no harsh reagents and can take less than 30 min to prepare, load, coat, and form the hollow capsules. For these reasons, it is expected that the technique will play a crucial role across scientific studies in numerous fields.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5115278PMC
http://dx.doi.org/10.1002/advs.201400007DOI Listing

Publication Analysis

Top Keywords

polymer capsules
12
versatile loading
4
loading diverse
4
cargo
4
diverse cargo
4
cargo functional
4
polymer
4
functional polymer
4
capsules
4
capsules polymer
4

Similar Publications

Nanosuspension Innovations: Expanding Horizons in Drug Delivery Techniques.

Pharmaceutics

January 2025

Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.

Nanosuspensions (NS), with their submicron particle sizes and unique physicochemical properties, provide a versatile solution for enhancing the administration of medications that are not highly soluble in water or lipids. This review highlights recent advancements, future prospects, and challenges in NS-based drug delivery, particularly for oral, ocular, transdermal, pulmonary, and parenteral routes. The conversion of oral NS into powders, pellets, granules, tablets, and capsules, and their incorporation into film dosage forms to address stability concerns is thoroughly reviewed.

View Article and Find Full Text PDF

Chitosan Micro/Nanocapsules in Action: Linking Design, Production, and Therapeutic Application.

Molecules

January 2025

Department of Chemical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain.

pH sensitivity of chitosan allows for precise phase transitions in acidic environments, controlling swelling and shrinking, making chitosan suitable for drug delivery systems. pH transitions are modulated by the presence of cross-linkers by the functionalization of the chitosan chain. This review relays a summary of chitosan functionalization and tailoring to optimize drug release.

View Article and Find Full Text PDF

The study aimed to investigate the stability and anti-allergic efficacy of phycocyanin through the construction of microcapsules. Phycocyanin (PC), a blue pigment found in microalgae, has attracted significant attention due to its anti-allergic properties. However, it is susceptible to instability when exposed to light, heat, and changes in pH.

View Article and Find Full Text PDF

Purpose: Proliferative vitreoretinopathy (PVR) is a complication of retinal detachment which requires multiple vitreoretinal surgical interventions and frequent use of oil endotamponade. In this study, we conducted an in-depth analysis of complications associated with the use of heavy silicone oil in the management of inferior PVR.

Methods: A retrospective cohort study of 20 eyes that underwent vitrectomy for inferior PVR with use of heavy silicone oil (Densiron 68) between March 2021 and October 2022 at Oxford Eye Hospital.

View Article and Find Full Text PDF

The Chemistry of Sporopollenin Ektexine and Endexine Layers Isolated from Sunflower Pollen through an Ionic Liquid-Mediated Process.

ACS Omega

January 2025

Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal.

Sporopollenin is a plant polymer present in the exine of the pollen grains that comprises two layers: the endexine and the ektexine. It possesses remarkable mechanical, thermal, and chemical stability and is also highly recalcitrant to hydrolysis. The chemical backbone of sporopollenin mostly consists of a polyhydroxylated aliphatic component and polyketide-derived aliphatic α-pyrone elements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!