Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Taste receptors coupled to the gustatory G-protein, gustducin, on enteroendocrine cells sense nutrients to regulate gut hormone release. During Roux-en-Y gastric bypass (RYGB) surgery, the altered nutrient flow to more distal regions can affect gustducin-mediated gut hormone release and hence energy and glucose homeostasis. We studied the role of gustducin-mediated signaling in the metabolic improvements and intestinal adaptations along the gut after RYGB surgery in wild-type (WT) and α-gustducin (α-gust) mice. RYGB surgery decreased body weight in WT and α-gust mice, whereas food intake was only decreased in WT mice. Pair-feeding to the RYGB group improved glucose homeostasis to a similar extent in WT mice. GLP1 levels were increased in both genotypes, PYY levels in α-gust mice and octanoyl ghrelin levels were not affected after RYGB surgery. In WT mice, nutrients act via α-gustducin to increase L-cell differentiation (foregut) and L-cell number (foregut and hindgut) in a region-dependent manner. In α-gust mice, the effect on gut hormone levels is probably tuned via increased peptide sensor and glucose transporter expression in the Roux limb and increased caecal butyrate and propionate levels in the hindgut that activate free fatty acid receptors. Finally, signaling via α-gustducin plays a role in the increased ion transport of the foregut but not in the improvement in colonic barrier function. In conclusion, RYGB surgery decreased body weight in both WT and α-gust mice. Elevated plasma GLP1 and PYY levels might mediate this effect, although α-gustducin differentially affects several regulatory systems in the foregut and hindgut, tuning gut hormone release.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1530/JOE-16-0541 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!