The p7 viroporin of the hepatitis C virus contributes to liver inflammation by stimulating production of Interleukin-1β.

Biochim Biophys Acta Mol Basis Dis

Department of Biochemistry, German University in Cairo, New Cairo, Egypt. Electronic address:

Published: March 2017

Hepatitis C is one of the most widespread infectious diseases worldwide and hepatitis C virus (HCV)-induced chronic inflammation is highly associated with progredient liver damage. It was shown that HCV infection increases levels of pro-inflammatory cytokines via activation of NOD-like receptor (NLRP3) inflammasomes, yet the underlying mechanism is still under question. We propose modulation of intracellular pH by p7, a 63 residue ion channel produced by the hepatitis C virus as a possible pathomechanism for hepatitis C-associated inflammation. Recombinant constructs corresponding to HCV genotypes 1-4 were expressed in HEK 293 and RAW 264.7 cells and changes of intracellular pH were monitored using pH-sensitive fluorescent probes as well as production of inflammatory cytokines. Presence of p7 induced general loss of vesicular acidity as well as producing a significant increase in the levels of interleukin-1β (IL-1β). Effects showed a genotype-dependent pattern of IL-1β production, in agreement with the pH-response profile of p7 channels corresponding to hepatitis C genotypes. Lowering the pH of the extracellular medium increased activity of p7 channels as well as production of IL-1β for genotypes 1, 3, and 4, but less for genotype 2. Our data are in agreement with the hypothesis that p7 activity can trigger intracellular signaling cascades that are involved in HCV-associated cytopathy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2016.12.006DOI Listing

Publication Analysis

Top Keywords

hepatitis virus
12
well production
8
hepatitis
5
viroporin hepatitis
4
virus contributes
4
contributes liver
4
liver inflammation
4
inflammation stimulating
4
production
4
stimulating production
4

Similar Publications

Purpose: Xylazine has been associated with necrotic soft tissue wounds that have placed a challenging burden on patients who inject drugs in the Philadelphia region's health care system over the last few years. An analysis of our initial experience is being presented to guide future treatment and directions for future research.

Methods: A retrospective review of 55 patients with patient-reported xylazine use and associated upper-extremity wounds at a single institution was performed.

View Article and Find Full Text PDF

The unexplained association between infection and autoimmune disease is strongest for hepatitis C virus-induced cryoglobulinemic vasculitis (HCV-cryovas). To analyze its origins, we traced the evolution of pathogenic rheumatoid factor (RF) autoantibodies in four HCV-cryovas patients by deep single-cell multi-omic analysis, revealing three sources of B cell somatic mutation converged to drive the accumulation of a large disease-causing clone. A method for quantifying low-affinity binding revealed recurring antibody variable domain combinations created by V(D)J recombination that bound self-immunoglobulin G (IgG) but not viral E2 antigen.

View Article and Find Full Text PDF

Survival of viruses in water microcosms.

Sci Total Environ

January 2025

Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain. Electronic address:

Human enteric viruses and emerging viruses such as severe acute respiratory syndrome coronavirus 2, influenza virus and monkeypox virus, are frequently detected in wastewater. Human enteric viruses are highly persistent in water, but there is limited information available for non-enteric viruses. The present study evaluated the stability of hepatitis A virus (HAV), murine norovirus (MNV), influenza A virus H3N2 (IAV H3N2), human coronavirus (HCoV) 229E, and vaccinia virus (VACV) in reference water (RW), effluent wastewater (EW) and drinking water (DW) under refrigeration and room temperature conditions.

View Article and Find Full Text PDF

Evaluation of a next generation sequencing assay for Hepatitis B antiviral drug resistance on the oxford nanopore system.

J Clin Virol

January 2025

Division of Medical Microbiology and Virology, St. Paul's Hospital, Providence Health Care, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada. Electronic address:

Background: Next-generation sequencing (NGS) for Hepatitis B virus (HBV) antiviral resistance (AVR) testing is a highly sensitive diagnostic method, able to detect low-level mutant subpopulations. Our clinical virology laboratory previously transitioned from DNA hybridization (INNO-LiPA) to NGS, initially with the GS Junior System and subsequently the MiSeq. The Oxford Nanopore Technology (ONT) sequencing system was evaluated for HBV resistance testing, with regards to sequencing accuracy and turn-around time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!