A microbial fuel cell (MFC), with graphite electrodes as both the anode and cathode, was operated with a soil-free anaerobic consortium for phenol degradation. This phenol-degrading MFC showed high efficiency with a current density of 120 mA/m and a coulombic efficiency of 22.7%, despite the lack of a platinum catalyst cathode and inoculation of sediment/soil. Removal of planktonic bacteria by renewing the anaerobic medium did not decrease the performance, suggesting that the phenol-degrading MFC was not maintained by the planktonic bacteria but by the microorganisms in the anode biofilm. Cyclic voltammetry analysis of the anode biofilm showed distinct oxidation and reduction peaks. Analysis of the microbial community structure of the anode biofilm and the planktonic bacteria based on 16S rRNA gene sequences suggested that Geobacter sp. was the phenol degrader in the anode biofilm and was responsible for current generation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiosc.2016.10.010 | DOI Listing |
Medicina (Kaunas)
November 2024
1st Department of Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
Biofilm formation on cochlear implants (CIs) poses a major problem for surgeons, leading to a high incidence of explantation and revision surgery. Therefore, developing appropriate and cost-effective biofilm detection and prevention techniques is of the essence. In this systematic review, we sought to investigate the development of biofilm formation on CIs.
View Article and Find Full Text PDFWater Res
December 2024
MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science & Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China. Electronic address:
Lipids offer high energy recovery potential during anaerobic digestion (AD), but their hydrolysis generates long-chain fatty acids (LCFAs), which are difficult to biodegrade. The introduction of microbial electrolysis cells has been widely recognized as a promising strategy to enhance AD. However, it is still under debate whether the electrical circuit needs to be connected, as certain electrodes with large specific surface areas have been reported to enhance direct interspecies electron transfer (DIET) without requiring an external power supply.
View Article and Find Full Text PDFBioelectrochemistry
December 2024
Marine Corrosion and Protection Team, School of Chemical Engineering and Technology (Zhuhai 519082), Sun Yat-sen University, China. Electronic address:
This study investigates the corrosion of 90/10 copper-nickel (Cu-Ni) alloy caused by sulfate-reducing bacteria (SRB) in the presence of aluminum anodes, with particular emphasis on the role of electron supply in microbial corrosion and the resulting local corrosion failures. The study reveals that the electron supply from the anode supports SRB growth on the Cu-Ni alloy through an "Electrons-siphoning" mechanism. However, the supply is insufficient to sustain the SRB population, resulting in ineffective cathodic protection (i = 2.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China.
Simultaneous monitoring of antimicrobial responses to bacterial metabolic activity and biofilm formation is critical for efficient screening of new anti-biofilm drugs. A microbial fuel cell-based biosensor using as an electricigen was constructed. The effects of silver nanoparticles (AgNPs) on the cellular metabolic activity and biofilm formation of in the biosensors were investigated and compared with the traditional biofilm detection method.
View Article and Find Full Text PDFBioresour Technol
December 2024
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China. Electronic address:
Utilizing microbial fuel cells (MFCs) technology to simultaneously achieve efficient biopower generation and pollutant degradation is a persistent pursuit. However, the limited rate of extracellular electron transfer (EET) and the availability of electrode materials remain key factors limiting the practical application of MFCs. In this article, modified carbon derived from cyanobacteria is applied to modify electrodes and assemble MFCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!