Rare earth elements in parasol mushroom Macrolepiota procera.

Food Chem

State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China.

Published: April 2017

AI Article Synopsis

  • The study focused on the presence and distribution of 16 rare earth elements (REEs) in the edible mushroom Macrolepiota procera, assessing potential health risks for consumers.
  • The research involved collecting mushroom samples from 16 different locations in northern Poland, where cerium (Ce) was found to be the most abundant REE at an average concentration of 0.18 mg/kg in the caps.
  • Overall, the total concentration of 16 REEs was low, suggesting that consuming M. procera poses minimal health risks related to REE exposure for consumers.

Article Abstract

This study aimed to investigate occurrence and distribution of 16 rare earth elements (REEs) in edible saprobic mushroom Macrolepiota procera, and to estimate possible intake and risk to human consumer. Mushrooms samples were collected from sixteen geographically diverse sites in the northern regions of Poland. The results showed that for Ce as the most abundant among the RREs in edible caps, the mean concentration was at 0.18±0.29mgkgdry biomass. The mean concentration for Σ16 REEs determined in caps of fungus was 0.50mgkgdry biomass and in whole fruiting bodies was 0.75mgkgdry biomass. From a point of view by consumer, the amounts of REEs contained in edible caps of M. procera could be considered small. Hence, eating a tasty caps of this fungus would not result in a health risk for consumer because of exposure to the REEs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2016.10.047DOI Listing

Publication Analysis

Top Keywords

rare earth
8
earth elements
8
mushroom macrolepiota
8
macrolepiota procera
8
edible caps
8
caps fungus
8
elements parasol
4
parasol mushroom
4
procera study
4
study aimed
4

Similar Publications

The first ornithocheiromorph humerus from Wuerho (Urho), China, with a new isotopic age of the Tugulu Group.

An Acad Bras Cienc

January 2025

Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Key Laboratory of Vertebrate Evolution and Human Origins, Beijing, 100044, China.

Pterosaur remains are rare from the lowermost Cretaceous, hampering our understanding of the taxonomic and morphological diversities of pterosaurs during this period. The Lower Cretaceous Tugulu Group in Wuerho, China is renowned for hosting the Wuerho Pterosaurian Fauna (WPF), which has so far yielded numerous fossil remains of two dsungaripterid pterosaurs, Dsungaripterus weii and Noripterus complicidens. Here we report a partial ornithocheiromorph humerus from the WPF, representing a deeply divergent clade from Dsungaripteridae.

View Article and Find Full Text PDF

Normative measurements of the frontal nerve by magnetic resonance imaging in an Australia cohort.

Surg Radiol Anat

January 2025

Department of Ophthalmology & Visual Sciences, University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia.

Purpose: To report the normative dimensions of the frontal nerve (FN) on fat-suppressed suppressed gadolinium (fs-gad) enhanced magnetic resonance imaging (MRI).

Method: A retrospective cohort study of patients who underwent coronal fs-gad T1-weighted MRI. Orbits were excluded if there was unilateral or bilateral pathology of the FN or optic nerve sheath (ONS), incomplete MRI sequences, poor image quality or indiscernible FN on radiological assessment.

View Article and Find Full Text PDF

Purpose: To compare the effect on sexual function of ejaculation-sparing enucleation of the prostate using Thulium: YAG laser (ES-ThuLEP) versus continuous-wave Thulium Fiber Laser (ES-ThuFLEP).

Methods: 112 patients with lower urinary tract symptoms secondary to benign prostatic hyperplasia who wished to preserve ejaculation were treated. 58 patients underwent ES-ThuLEP (Group A) using the Cyber TM generator.

View Article and Find Full Text PDF

Intracellular viscosity is a critical microenvironmental factor in various biological systems, and its abnormal increase is closely linked to the progression of many diseases. Therefore, precisely controlling the release of bioactive molecules in high-viscosity regions is vital for understanding disease mechanisms and advancing their diagnosis and treatment. However, viscosity alone cannot directly trigger chemical reactions.

View Article and Find Full Text PDF

Oxygen Evolution Reaction of Amorphous/Crystalline Composites of NiFe(OH)/NiFeO.

ACS Nano

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

Orbital structures are strongly correlated with catalytic performance, whereas their regulation strategy is still in pursuit. Herein, the Fe 3 and O 2 orbital hybridization was optimized by controlling the content of amorphous NiFe(OH) (a-NiFe(OH)), which was grown in situ on crystalline NiFeO (c-NiFeO) using an ultrasonic reduction method. The results of electron energy loss spectroscopy (EELS) and X-ray absorption spectra (XAS) revealed that the Fe-O orbital hybridization in a-NiFe(OH) is effectively strengthened by jointing with the adjacent oxygen (O) in c-NiFeO, which is further confirmed by the higher antibonding orbital energies based on density functional theory (DFT) calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!