Technological properties of amazonian oils and fats and their applications in the food industry.

Food Chem

Federal University of Pará, Faculty of Food Engineering, Laboratory of Physical Measurements, Rua Augusto Corrêa s/n, 66075-900 Belém, PA, Brazil. Electronic address:

Published: April 2017

The application of lipids to food production is dependent on their physical, chemical, and nutritional properties. In this study, pracaxi oil, passion fruit oil, cupuassu fat, and palm stearin underwent physicochemical analyses and were combined at ratios of 40:60, 50:50, 60:40, and 70:30 to assess their potential applications in the food industry. Pracaxi oil, passion fruit oil, and cupuassu fat had interesting fatty acid profiles from a nutritional standpoint, displaying the lowest atherogenicity and thrombogenicity indices (0.02 and 0.14; 0.12 and 0.34; 0.16 and 0.65), respectively. Palm stearin had high thermal stability (7.23h). The primary applications of the blends obtained in this study are in table and functional margarine, particularly the pracaxi-stearin and passion fruit-stearin 40:60 and 50:50, pracaxi-cupuassu 60:40 and 70:30, and passion fruit-cupuassu 40:60 blends. The results suggest new industrial applications, especially for pracaxi and passion fruit oils, which are commonly applied in the cosmetic industry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2016.11.004DOI Listing

Publication Analysis

Top Keywords

passion fruit
12
applications food
8
food industry
8
pracaxi oil
8
oil passion
8
fruit oil
8
oil cupuassu
8
cupuassu fat
8
palm stearin
8
4060 5050
8

Similar Publications

Over the last decade, the environmental and wellness cost of antibiotic drug resistance to the societies have been astounding and require urgent attention Metal oxide nanomaterials have been achieved a pull-on deal with its entire applications in biological and photocatalytic applications. The present study conducts a comparative investigation on chemical and biogenic synthesis of zirconium dioxide (ZrO) nanoparticles aimed at enhancing their efficacy in their applications. The plant extract of Passiflora edulis act as a reducing and capping properties offering a sustainable and eco-friendly alternative.

View Article and Find Full Text PDF

Background: Purple passion fruit (Passiflora edulis f. edulis) is a highly appreciated fruit typically consumed in fresh or processed into various food products. The peel and seeds, which are by-products of fruit processing, are rich in nutrients and bioactive compounds with potential to be valorised into food applications.

View Article and Find Full Text PDF

Integrated Transcriptomic and Metabolomic Analysis Revealed Regulatory Mechanisms on Flavonoids Biosynthesis in the Skin of Passion Fruit ( spp.).

J Agric Food Chem

December 2024

College of Horticulture, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Passion fruit is one of the most famous fruit crops in tropical and subtropical regions due to its high edible, medicinal, and ornamental value. Flavonoids, a class of plant secondary metabolites, have important health-related roles. In this study, a total of 151 flavonoid metabolites were identified, of which 25 key metabolites may be the main contributors to the purple phenotype.

View Article and Find Full Text PDF

Passion fruit ( Sims) is a Passifloraceae plant with high economic value. Crown rot caused by is a major fungal disease, which can seriously reduce the yield and quality of passion fruit. Receptor-like proteins (RLPs), which act as pathogen recognition receptors, are widely involved in plant immune responses and developmental processes.

View Article and Find Full Text PDF

Proper activity of the age-dependent miR156 is required for leaf heteroblasty and extrafloral nectary development in Passiflora spp.

New Phytol

December 2024

Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil.

Article Synopsis
  • The study investigates how the age-related microRNA miR156 influences the development of extrafloral nectaries (EFNs) in two species of passion flower.
  • Results show that manipulation of miR156 affects both leaf maturation and EFN formation, with overexpression leading to smaller and fewer EFNs, while reduced activity results in larger EFNs in one species.
  • This research highlights a connection between miR156 activity, nectar sugar profiles, and the ecological interactions between EFNs and ants, underscoring the role of the miR156/SPL module in regulating these traits based on leaf age.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!