β-sitostanol esters, used as dietary complement for decreasing cholesterol absorption, have been synthesized at 28°C via direct esterification or transesterification catalyzed by the versatile lipase/sterol esterase from the ascomycete fungus O. piceae. Direct esterification was conducted in biphasic isooctane: water systems containing 10mM β-sitostanol and lauric or oleic acid as acyl donors, reaching 90% esterification in 3h with the recombinant enzyme. The use of molar excesses of the free fatty acids did not improve direct esterification rate, and the enzyme did not convert one of the two fatty acids preferentially when both were simultaneously available. On the other hand, solvent-free transesterification was an extremely efficient mechanism to synthesize β-sitostanyl oleate, yielding virtually full conversion of up to 80mM β-sitostanol in 2h. This process may represent a promising green alternative to the current chemical synthesis of these esters of unquestionable nutraceutical value.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2016.11.005 | DOI Listing |
Foods
December 2024
Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China.
Starch films have attracted increasing attention due to their biodegradability, edibility, and potential use as animal feed from post-products. Applications of starch-based films include food packaging, coating, and medicine capsules. However, a major drawback of starch-based films is their brittleness, particularly under dry conditions, caused by starch retrogradation and the instability of plasticizers.
View Article and Find Full Text PDFAs an advanced nucleic acid therapeutical modality, mRNA can express any type of protein in principle and thus holds great potential to prevent and treat various diseases. Despite the success in COVID-19 mRNA vaccines, direct local delivery of mRNA into the lung by inhalation would greatly reinforce the treatment of pulmonary pathogens and diseases. Herein, we developed lipid nanoparticles (LNPs) from degradable ionizable glycerolipids for potent pulmonary mRNA delivery via nebulization.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Odisha, India. Electronic address:
Bioactive functional materials have been focused recently because of their superior properties due to structural orientations. Herein, carbon quantum dots (CQDs) encapsulated chemically modified carboxymethyl cellulose (CMC) nanocomposites are designed for non-enzymatic ex vivo glucose sensing by a low-cost green technique. The N,N'-Dicyclohexylcarbodiimide (DCC) assisted Steglich esterification between CMC and glucose is responsible for the fluorescence "Turn ON-OFF" mechanism behind glucose detection.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
Global concerns regarding the depletion and strategic importance of phosphorus resources have increased demand for the recovery and recycling. However, waste-derived phosphorus compounds, primarily as chemically inert phosphoric acid or its salts, present a challenge to their direct conversion into high-value chemicals. We aimed to develop an innovative technology that utilizes the large quantities of sewage waste, bypasses the use of white phosphorus, and enables esterification of phosphoric acid to produce widely applicable phosphate triesters.
View Article and Find Full Text PDFAcc Chem Res
December 2024
Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!